[1]葛慧华,蔡征文,张光亚.应用残基相互作用探讨嗜热和嗜冷酶稳定机制[J].华侨大学学报(自然科学版),2018,39(2):214-220.[doi:10.11830/ISSN.1000-5013.201705016]
 GE Huihua,CAI Zhengwen,ZHANG Guangya.Insight into Stability Mechanism of Thermophilic and Psychrophilic Enzymes Using Residue Interaction Networks[J].Journal of Huaqiao University(Natural Science),2018,39(2):214-220.[doi:10.11830/ISSN.1000-5013.201705016]
点击复制

应用残基相互作用探讨嗜热和嗜冷酶稳定机制()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第39卷
期数:
2018年第2期
页码:
214-220
栏目:
出版日期:
2018-03-20

文章信息/Info

Title:
Insight into Stability Mechanism of Thermophilic and Psychrophilic Enzymes Using Residue Interaction Networks
文章编号:
1000-5013(2018)02-0214-07
作者:
葛慧华 蔡征文 张光亚
华侨大学 化工学院, 福建 厦门 361021
Author(s):
GE Huihua CAI Zhengwen ZHANG Guangya
College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
关键词:
残基相互作用 稳定性机制 嗜热酶 嗜冷酶 特征值提取
Keywords:
residue interaction network mechanism of stability thermophilic enzyme psychrophilic enzyme feature extraction
分类号:
Q554.903;Q811.212
DOI:
10.11830/ISSN.1000-5013.201705016
文献标志码:
A
摘要:
为探寻嗜热酶和嗜冷酶稳定性的机制,提出一种基于蛋白分子内残基相互作用的方法.结果表明:在一级结构上,差异不明显的同源嗜热、常温、嗜冷酶在不同残基相互作用次数时,存在非常显著的差异;嗜热酶中,高相互作用次数的氨基酸及氨基酸类型与其同源常温酶差异最大,嗜热酶减少低相互作用次数的氨基酸,而增加高相互作用次数的氨基酸是其适应高温的普遍机制,嗜冷酶也存在类似趋势,但不如嗜热酶明显;同一个氨基酸在不同相互作用次数时,作用存在差异,这可解释现有一些相互矛盾的实验结果.
Abstract:
A novel method is proposed to explore the stable mechanism of thermophilic and psychrophilic enzymes based on the residue interaction network. The results clearly indicated that the thermophilic-mesophilic-psychrophilic homologs having no significant differences in sequence showed great significant differences according to various numbers of interactions in terms of amino acid composition. The amino acids and amino acid kinds varied remarkably at high degree of interactions between the thermophilic and mesophilic enzymes. At the same time, the thermophilic enzymes preferred amino acids with more interactions at the expense of those with less interaction, which may be a general rule for their adaptation to high temperature. The trends also existed in the psychrophilic enzyme, although it was not so obvious. Besides, the amino acid had contrary contributions to the stability of the enzymes at different degrees of interactions. That might be the reason that some references had opposite results.

参考文献/References:

[1] VIEILLE C,ZEIKUS G J.Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability[J].Microbiology and Molecular Biology Reviews,2001,65(1):1-43.DOI:10.1128/MMBR.65.1.1-43.2001.
[2] RADDADI N,CHERIF A,DAFFONCHIO D,et al.Biotechnological applications of extremophiles, extremozymes and extremolytes[J].Applied Microbiology and Biotechnology,2015,99(19):7907-7913.DOI:10.1007/s00253-015-6874-9.
[3] SHOKROLLAHZADE S,SHARIFI F,VASEGHI A,et al.Protein cold adaptation: Role of physico-chemical parameters in adaptation of proteins to low temperatures[J].Journal of Theoretical Biology,2015,383(30):130-137. DOI:10.1016/j.jtbi.2015.07.013.
[4] 王雪芹,丁彦蕊,牟兆琳,等.超氧化物歧化酶氨基酸网络与耐热性的关系研究[J].生物物理学报,2014,30(2):146-156.DOI:10.3724/SP.J.1260.2014.40009.
[5] YANG Lingling,TANG Shukun,HUANG Ying,et al.Low temperature adaptation is not the opposite process of high temperature adaptation in terms of changes in amino acid composition[J].Genome Biology and Evolution,2015,7(12):3426-3433.DOI:10.1093/gbe/evv232.
[6] TANG Hua,CAO Renzhi,WANG Liming,et al.A two-step discriminated method to identify thermophilic proteins[J]. 生物数学学报:英文版,2017(4):123-130.DOI:10.1142/S1793524517500504.
[7] PACK S P,YOO Y J.Protein thermostability: Structure-based difference of amino acid between thermophilic and mesophilic proteins[J].Journal of Biotechnology,2004,111(3):269-277.DOI:10.1016/j.jbiotec.2004.01.018.
[8] FUKUCHI S,NISHIKAWA K.Protein surface amino acid compositions distinctively differ between thermophilic and mesophilic bacteria[J].Journal of Molecular Biology,2001,309(4):835-843.DOI:10.1006/jmbi.2001.4718.
[9] 张光亚,方柏山.基于氨基酸组成分布的嗜热和嗜冷蛋白随机森林分类模型[J].生物工程学报,2008,24(2):302-308.DOI:10.13345/j.cjb.2008.02.007.
[10] GROMIHA M M,SURESH M X.Discrimination of mesophilic and thermophilic proteins using machine learning algorithms[J].Proteins: Structure, Function, and Bioinformatics,2008,70(4):1274-1279.DOI:10.1002/prot.21616.
[11] 张光亚,葛慧华,方柏山.采用BP算法的多层感知机模型的蛋白识别[J].华侨大学学报(自然科学版),2009,30(2):388-394.DOI:10.11830/ISSN.1000-5013.2009.02.0161.
[12] ALBERT R,JEONG H,BARABASI A L.Error and attack tolerance of complex networks[J].Nature,2001,340(1/2/3):378-382.DOI:10.1038/35019019.
[13] PAREDES D I,WATTERS K,PITMAN D J,et al.Comparative void-volume analysis of psychrophilic and mesophilic enzymes: Structural bioinformatics of psychrophilic enzymes reveals sources of core flexibility[J].BMC Structural Biology,2011,11(1):42.DOI:10.1186/1472-6807-11-42.
[14] SHOKROLLAHZADE S,SHARIFI F,VADEGHI A,et al.Protein cold adaptation: Role of physico-chemical parameters in adaptation of proteins to low temperatures[J].Journal of Theoretical Biology,2015,383(30):130-137.DOI:10.1016/j.jtbi.2015.07.013.
[15] GIANESE G,BOSSA F,PASCARELLA S.Comparative structural analysis of psychrophilic and meso-and thermophilic enzymes[J].Proteins: Structure, Function, and Bioinformatics,2002,47(2):236-249.DOI:10.1002/prot.10084.
[16] PIOVESAN D,MINERVINI G,TOSATTO S.The RING 2.0 web server for high quality residue interaction networks[J].Nucleic Acids Research,2016,44:W367-W374.DOI:10.1093/nar/gkw315.
[17] SHANNON P,MARKIEL A,OZIER O,et al.Cytoscape: A software environment for integrated models of biomolecular interaction networks[J].Genome Research,2003,13(11):2498-2504.DOI:10.1101/gr.1239303.
[18] PETTERSEN E F,GODDARD T D,HUANG C C,et al.UCSF Chimera: A visualization system for exploratory research and analysis[J].Journal of Computational Chemistry,2004,25(13):1605-1612.DOI:10.1002/jcc.20084.
[19] JAHANDIDEH S,ASADABADI E B,ABDOLMALEKI P,et al.Protein psychrophilicity: Role of residual structural properties in adaptation of proteins to low temperatures[J]. Journal of Theoretical Biology, 2007,248(4):721-726.DOI:10.1016/j.jtbi.2007.06.019.
[20] SMITG D K,RADIVOJAC P,OBRADOVIC Z,et al.Improved amino acid flexibility parameters[J].Protein Science,2003,12(5):1060-1072.
[21] TRONELLI D,MAUGINI E,BOSSA F,et al.Structural adaptation to low temperatures: Analysis of the subunit interface of oligomeric psychrophilic enzymes[J].FEBS Journal,2007,274(17):4595-4608.DOI:10.1110/ps.0236203.
[22] YOKOTA K,SATOU K,OHKI S.Comparative analysis of protein thermostability: Differences in amino acid content and substitution at the surfaces and in the core regions of thermophilic and mesophilic proteins[J].Science and Technology of Advanced Materials,2006,7(3):255-262.DOI:10.1016/j.stam.2006.03.003.
[23] XU Zhen,LIU Yunqing,YANG Yunliu,et al.Crystal structure of D-Hydantoinase from Burkholderia pickettii at a resolution of 2.7 Angstroms: Insights into the molecular basis of enzyme thermostability[J].Journal of Bacteriology,2003,185(14):4038-4049.DOI:10.1128/JB.185.14.4038-4049.2003.
[24] ZHOU Xinxin,WANG Yibo,PAN Yuanji,et al.Differences in amino acids composition and coupling patterns between mesophilic and thermophilic proteins[J].Amino Acids,2008,34(1):25-33.DOI:10.1007/s00726-007-0589-x.
[25] KARSHIKOFF A,NILSSON L,LADENSTEIN R.Rigidity versus flexibility: The dilemma of understanding protein thermal stability[J].FEBS Journal,2015,282(20):3899-3917.DOI:10.1111/febs.13343.
[26] JAHANDIDEH S,ABDOLMALEKI P,JAHANDIDEH M,et al.Sequence and structural parameters enhancing adaptation of proteins to low temperatures[J].Journal of Theoretical Biology,2007,246(1):159-166.DOI:10.1016/j.jtbi.2006.12.008.
[27] JAHANDIDEH M,BARKOOIE S M H,JAHANDIDEH S,et al.Elucidating the protein cold-adaptation: Investigation of the parameters enhancing protein psychrophilicity[J].Journal of Theoretical Biology,2008,255(1):113-118.DOI:10.1016/j.jtbi.2008.07.034.
[28] METPALLY R P R,REDDY B V B.Comparative proteome analysis of psychrophilic versus mesophilic bacterial species: Insights into the molecular basis of cold adaptation of proteins[J].BMC Genomics,2009,10(1):11.DOI:10.1186/1471-2164-10-11.
[29] ISAKSEN G V,ÅQVIST J,BRANDSDAL B O.Enzyme surface rigidity tunes the temperature dependence of catalytic rates[J].Proceedings of the National Academy of Sciences,2016,113(28):7822-7827.DOI:10.1073/pnas.1605237113.
[30] YANG Lingling,TANG Shukun,HUANG Ying,et al.Low temperature adaptation is not the opposite process of high temperature adaptation in terms of changes in amino acid composition[J].Genome Biology and Evolution,2015,7(12):3426-3433.DOI:10.1093/gbe/evv232.
[31] CHOU P Y,FASMAN G D.Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins[J].Biochemistry,1974,13(2):211-222.
[32] COSTANTINI S,COLONNA G,FACCHIANO A M.Amino acid propensities for secondary structures are influenced by the protein structural class[J].Biochemical and Biophysical Research Communications,2006,342(2):441-451.DOI:10.1016/j.bbrc.2006.01.159.
[33] OHSHIDA T,HAYASHI J,SATOMURA T, et al. First characterization of extremely halophilic 2-deoxy-D-ribose-5-phosphate aldolase[J].Protein Expression and Purification,2016,126:62-68.DOI:10.1016/j.pep.2016.05.009.
[34] DICK M,WEIERGRÄBER O H,CLASSEN T,et al.Trading off stability against activity in extremophilic aldolases[J].Scientific Reports,2016,6:17908.DOI:10.1038/srep17908.

备注/Memo

备注/Memo:
收稿日期: 2017-05-10
通信作者: 张光亚(1975-),男,教授,博士,主要从事酶学与酶工程的研究.E-mail:zhgyghh@hqu.edu.cn.
基金项目: 国家海洋局第三海洋研究所海洋生物遗传资源重点实验室开放课题资助项目(HY201501)
更新日期/Last Update: 2018-03-20