参考文献/References:
[1] CIRESAN D,MEIER U,SCHMIDHUBER J.Multi-column deep neural networks for image classificatiion[C]//IEEE Conference on Computer Vision and Pattern Recognition.Rhode lsland:IEEE Press,2012:3642-3649.
[2] SHI Baoguang,BAI Xiang,YAO Cong.Script identification in the wild via discriminative convolutional neural network[J].Pattern Recognition,2016,52:448-458.DOI:10.1016/j.patcog.2015.11.005.
[3] CHATFIELD K,SIMONYAN K,VEDALDI A,et al.Return of the devil in the details: Delving deep into convolutional nets[C]//Proc of the British Machine Vision Conference.Nottingham:BMVA Press,2014:1-12.DOI:10.5244/C.28.6.
[4] SIMARD P Y,STEINKRAUS D,PLATT J C.Best practices for convolutional neural networks applied to visual document analysis[C]//Proc of the 17th International Conference on Document Analysis and Recognition.Edinburgh:IEEE Press,2013:958-963.
[5] SUN Yi,WANG Xiaogang,TANG Xiaoou.Deep convolutional network cascade for facial point detection[C]//Proc of the 26th IEEE Conference on Computer Vision and Pattern Recognition.Oregon:IEEE Press,2013:3476-3483.
[6] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]//Proc of the 19th International Conference on Nerual Information Processing.New York:ACM Press,2012:1097-1105.DOI:10.1145/3065386.
[7] ZEILER M D,TAYLOR G W,FERGUS R.Adaptivedeconvolutional networks for mid and high level feature learning[C]//Proc of the International Conference on Computer Vision.Barcelona:IEEE Press,2011:2018-2025.
[8] ZEILER M D,FERGUS R.Visualizing and understanding convolutional networks[C]//Proc of the European Conference on Computer Vision.Berlin:Springer,2014:818-833.
[9] SERMANET P,EIGEN D,ZHANG Xiang,et al.Overfeat: Integrated recognition, localization and detection using convolutional networks[J].Eprint Arxiv,2014(V4):1-16.
[10] JIE Zequn,YAN Shuicheng.Robust scene classification with cross-level LLC coding on CNN features[M].Bangalore:Springer,2014.
[11] BARAT C,DUCOTTET C.String representations and distances in deep convolutional neural networks for image classification[J].Pattern Recognition,2016,54(C):104-115.DOI:10.1016/j.patcog.2016.01.007.
[12] 吕娜.基于深度层次特征学习的大规模图像分类研究[D].成都:电子科技大学,2015.
[13] COATES A,NG A Y,LEE H.An analysis of single-layer networks in unsupervised feature learning[J].Journal of Machine Learning Research,2011,15:215-233.
[14] 何鹏程.改进的卷积神经网络模型及其应用研究[D].大连:大连理工大学,2015.
[15] PALM R B.Prediction as a candidate for learning deep hierarchical models of data[D].Denmark:Technical University of Denmark,2012.
[16] HINTON G E,SRIVASTAVA N,KRIZHEVSKY A,et al.Improving neural networks by preventing co-adaptation of feature detectors[J].Computer Science,2012,3(4):213-223.