[1]吕太之,周武,赵春霞.采用粒子群优化和B样条曲线的改进可视图路径规划算法[J].华侨大学学报(自然科学版),2018,39(1):103-108.[doi:10.11830/ISSN.1000-5013.201702101]
 Lü Taizhi,ZHOU Wu,ZHAO Chunxia.Improved Visibility Graph Method Using Particle Swarm Optimization and B-Spline Curve for Path Planning[J].Journal of Huaqiao University(Natural Science),2018,39(1):103-108.[doi:10.11830/ISSN.1000-5013.201702101]
点击复制

采用粒子群优化和B样条曲线的改进可视图路径规划算法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第39卷
期数:
2018年第1期
页码:
103-108
栏目:
出版日期:
2018-01-17

文章信息/Info

Title:
Improved Visibility Graph Method Using Particle Swarm Optimization and B-Spline Curve for Path Planning
文章编号:
1000-5013(2018)01-0103-06
作者:
吕太之12 周武3 赵春霞2
1. 江苏海事职业技术学院 信息工程学院, 江苏 南京 210012;2. 南京理工大学 计算机科学与工程学院, 江苏 南京 210094;3. 浙江师范大学 工学院, 浙江 金华, 321019
Author(s):
Lü Taizhi12 ZHOU Wu3 ZHAO Chunxia2
1. School of Information Engineering, Jiangsu Maritime Institute, Nanjing 210012, China; 2. School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; 3. School of Engineering, Zhejiang Normal University, Jinhua 321019, China
关键词:
移动机器人 局部路径规划 可视图 粒子群算法 B样条曲线
Keywords:
mobile robot local path planning visibility graph particle swarm algorithm B-spline curve
分类号:
TP312
DOI:
10.11830/ISSN.1000-5013.201702101
文献标志码:
A
摘要:
针对传统局部路径规划中容易陷入局部陷阱和规划路径不平滑的问题,提出一种将改进可视图,基于B样条曲线和粒子群优化算法结合起来规划一条平滑路径的算法.该算法由多边形动态生成、路径规划和路径平滑3个步骤组成,为了逃离局部陷阱,在多边形动态生成的过程中增加环境记忆功能,并通过路径平滑过程,使规划的路径更能满足移动机器人动力约束条件.仿真实验结果验证了算法的有效性,对比其他几种路径规划算法,所提出算法规划的路径质量更高.
Abstract:
Trapping in local minima and discontinuities often exist in local path planning. To overcome these drawbacks, this paper presents a smooth path planning algorithm based on modified visibility graph which involves B-spline curves and particle swarm optimization. This algorithm consists of three steps: dynamically generate polygons, plan a path and smooth the path. To escape from traps, the environment is memorized in the dynamic polygon generation process. By the path smooth process, this planned path is more adapt the kinetics constraint of mobile robots. Simulations verify the effectiveness of the proposed algorithm. Comparing other several path planning algorithms, the planned path by the proposed algorithm posses a higher quality.

参考文献/References:

[1] 孙祥云,邵辉,赵家宏.采用粒子群优化算法的液压挖掘机高效空中运动轨迹规划方法[J].华侨大学学报(自然科学版),2014,35(5):498-502.
[2] 徐望宝.移动机器人局部路径规划的人工力矩方法[D].大连:大连理工大学,2014.
[3] 于振中,闫继宏,赵杰,等.改进人工势场法的移动机器人路径规划[J].哈尔滨工业大学学报,2011,43(1):50-55.
[4] MEDDAH F, DIB L. E-Bug: New bug path-planning algorithm for autonomous robot in unknown environment
[C]//Proc of International Conference on Intelligent Information Processing, Security and Advanced Communication.New York:ACM,2015:1-8.DOI:10.1145/2816839.2816864.
[5] 马家辰,张琦,马立勇,等.基于多行为融合的移动机器人路径规划方法[J].北京理工大学学报,2014,34(6):41-46.
[6] MONTIEL O,SEPùLVEDA R,OROZCO-ROSAS U.Optimal path planning generation for mobile robots using parallel evolutionary artificial potential field[J].Journal of Intelligent and Robotic Systems,2015,79(2):237-257.
[7] GURUPRASAD K.EgressBug: A real time path planning algorithm for a mobile robot in an unknown environment[C]//Proc of International Conference on Advanced Computing, Networking and Security.Berlin:Springer-Verlag,2011:228-236.
[8] WOODEN D, EGERSTEDT M. Oriented visibility graphs: Low-complexity planning in real-time environments
[C]//Proc of IEEE International Conference on Robotics and Automation.Orlando:IEEE Press,2006:2354-2359.DOI:10.1109/ROBOT.2006.1642054.
[9] 袁夏.基于激光雷达的智能机器人环境理解关键技术研究[D].南京:南京理工大学,2010:80-83.
[10] Lü Taizhi,ZHAO Chunxia,BAO Jiancheng.A global path planning algorithm based on bidirectional SVGA[J/OL].Journal of Robotics,2017,2017(9):1-11.DOI:10.1155/2017/8796531.
[11] 梁锡坤.B样条类曲线曲面理论及其应用研究[D].合肥:合肥工业大学,2012.
[12] 吕太之,李卓.基于动态分数阶和Alpha稳定分布的粒子群优化算法[J].计算机科学,2014,41(7):246-249.

相似文献/References:

[1]王展妮,张国亮,武浩然,等.融合自主漫游及远程监控的图书馆移动机器人系统设计[J].华侨大学学报(自然科学版),2017,38(3):391.[doi:10.11830/ISSN.1000-5013.201703019]
 WANG Zhanni,ZHANG Guoliang,WU Haoran,et al.System Design of Tele-Supervision and Auto Roam Applied on Library Mobile Robot[J].Journal of Huaqiao University(Natural Science),2017,38(1):391.[doi:10.11830/ISSN.1000-5013.201703019]
[2]贾丙佳,李平.复杂环境下移动机器人路径规划算法[J].华侨大学学报(自然科学版),2021,42(1):103.[doi:10.11830/ISSN.1000-5013.202002003]
 JIA Bingjia,LI Ping.Path Planning Algorithm of Mobile Robotin Complex Environment[J].Journal of Huaqiao University(Natural Science),2021,42(1):103.[doi:10.11830/ISSN.1000-5013.202002003]
[3]葛文雅,李平.移动机器人路径规划安全A*算法[J].华侨大学学报(自然科学版),2022,43(5):658.[doi:10.11830/ISSN.1000-5013.202107028]
 GE Wenya,LI Ping.Safe A* Algorithm of Mobile Robot Path Planning[J].Journal of Huaqiao University(Natural Science),2022,43(1):658.[doi:10.11830/ISSN.1000-5013.202107028]

备注/Memo

备注/Memo:
收稿日期: 2017-02-02
通信作者: 吕太之(1979-),男,高级工程师,博士,主要从事移动机器人导航技术的研究.E-mail:lvtaizhi@163.com.
基金项目: 国家自然科学基金资助项目(61101197); 江苏省高校优秀中青年教师和校长赴境外研修项目(201121)
更新日期/Last Update: 2018-01-20