[1]孙文豪,张锋,汪涵,等.应用SOFxLMS算法的振动主动控制MATLAB仿真[J].华侨大学学报(自然科学版),2017,38(6):779-785.[doi:10.11830/ISSN.1000-5013.201611025]
 SUN Wenhao,ZHANG Feng,WANG Han,et al.MATLAB Simulation of Active Vibration Control Using SOFxLMS Algorithm[J].Journal of Huaqiao University(Natural Science),2017,38(6):779-785.[doi:10.11830/ISSN.1000-5013.201611025]
点击复制

应用SOFxLMS算法的振动主动控制MATLAB仿真()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第38卷
期数:
2017年第6期
页码:
779-785
栏目:
出版日期:
2017-11-20

文章信息/Info

Title:
MATLAB Simulation of Active Vibration Control Using SOFxLMS Algorithm
文章编号:
1000-5013(2017)06-0779-07
作者:
孙文豪 张锋 汪涵 罗顺安 李海燕
华侨大学 机电及自动化学院, 福建 厦门 361021
Author(s):
SUN Wenhao ZHANG Feng WANG Han LUO Shunan LI Haiyan
College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China
关键词:
振动主动控制 SOFxLMS算法 FxLMS算法 次级通道 脉冲响应系数 MATLAB仿真
Keywords:
active vibration control SOFxLMS algorithm FxLMS algorithm secondary channel impulse response coefficient MATLAB simulation
分类号:
TB535
DOI:
10.11830/ISSN.1000-5013.201611025
文献标志码:
A
摘要:
为了改进振动主动控制中控制算法的性能和提高对振动的控制效果,以滤波-x型最小均方(FxLMS)算法为基础改进得到SOFxLMS算法.在MATLAB/SIMULINK中利用level-2 S-函数搭建算法的自定义模块和仿真结构框图,在保证系统稳定及相同条件下分别对两种算法进行仿真对比.结果表明:改进后的SOFxLMS算法有效,且具有更好的收敛性能;在振动主动控制中滤波器阶数较少、迭代步长较大的情况下具有更好的控制效果.
Abstract:
In order to improve the performance of the control algorithm in active vibration control, an improved algorithm SOFxLMS was obtained based on the filtered-x least mean square(FxLMS)algorithm. The level-2 S-function was utilized to set up the custom blocks of the algorithms and the block-diagram of simulation in MATLAB/SIMULINK. Two algorithms are simulated and compared under the conditions of ensuring the system stability and the same conditions. The results verified that the improved SOFxLMS algorithm is effective and has better convergence performance, and it has the better control effect under the conditions with lower order and larger iteration step size.

参考文献/References:

[1] 张志谊,王俊芳,周建鹏,等.基于跟踪滤波的自适应振动控制[J].振动与冲击,2009,28(2):64-67.DOI:10.3969/j.issn.1000-3835.2009.02.016.
[2] 杨铁军,顾仲权,鲁明月,等.基于误差通道在线辨识的结构振动主动控制系统[J].振动与冲击,2004,23(3):55-59.DOI:10.3969/j.issn.1000-3835.2004.03.015.
[3] 张锋,李以农,丁庆中.FxLMS算法的实现及硬件在环仿真验证[J].重庆大学学报,2013,36(8):26-32.DOI:10.11835/j.issn.1000-582X.2013.08.005.
[4] 李元杰,戴再平.一种改进的MNVS自适应滤波算法[J].华侨大学学报(自然科学版),2000,21(4):404-407.DOI:10.3969/j.issn.1000-5013.2000.04.016.
[5] QIU X,HANSEN C H.An Algorithm for active control of transformer noise with on-line cancellation path modelling based on the perturbation method[J].Journal of Sound and Vibration,2001,240(4):647-665.DOI:10.1006/jsvi.2000.3256.
[6] CHANG Chengyuan,LUOH F.Enhancement of active noise control using neural-based filtered-x algorithm[J].Journal of Sound and Vibration,2007,305(1/2):348-356.DOI: 10.1016/j.jsv.2007.04.007.
[7] TANG X L,LEE C M.Time-frequency-domain filtered-x LMS algorithm for active noise control[J].Journal of Sound and Vibration,2012,331(23):5002-5011.DOI:10.1016/j.jsv.2012.07.009.
[8] 李以农,张锋,王雷,等.次级通道在线辨识的齿轮啮合振动主动控制[J].振动与冲击,2013,32(16):7-12.DOI:10.3969/j.issn.1000-3835.2013.16.002.
[9] BO Zhong,SUN Chao,XU Yonghui,et al.A variable momentum factor filtered-x weighted accumulated LMS algorithm for narrowband active noise control system[J].Measurement,2014,48(2):282-291.DOI:10.1016/j.measurement.2013.11.010.
[10] SONG J M,PARK P G.An optimal variable step-size affine projection algorithm for the modified filtered-x active noise control[J].Signal Processing,2015,114:100-111.DOI:10.1016/j.sigpro.2015.02.005.
[11] KRSTAJIC B,ZECEVIC Z,USKOKOVIC Z.Increasing convergence speed of FxLMS algorithm in white noise environment[J].AEU-International Journal of Electronics and Communications,2013,67(10):848-853.DOI:10.1016/j.aeue.2013.04.012.
[12] 王兵树,姜萍,林永君,等.SIMULINK中自抗扰控制技术自定义模块库的创建[J].系统仿真学报,2010,22(3):610-615.DOI:10.16182/j.cnki.joss.2010.03.037.

备注/Memo

备注/Memo:
收稿日期: 2016-11-18
通信作者: 张锋(1979-),男,讲师,博士,主要从事从事齿轮动力学、振动主动控制、压电智能材料等的研究.E-mail:alwaysqing@126.com.
基金项目: 国家自然科学基金资助项目(51405169); 福建省自然科学基金面上资助项目(2015J01636)
更新日期/Last Update: 2017-11-20