参考文献/References:
[1] 张志谊,王俊芳,周建鹏,等.基于跟踪滤波的自适应振动控制[J].振动与冲击,2009,28(2):64-67.DOI:10.3969/j.issn.1000-3835.2009.02.016.
[2] 杨铁军,顾仲权,鲁明月,等.基于误差通道在线辨识的结构振动主动控制系统[J].振动与冲击,2004,23(3):55-59.DOI:10.3969/j.issn.1000-3835.2004.03.015.
[3] 张锋,李以农,丁庆中.FxLMS算法的实现及硬件在环仿真验证[J].重庆大学学报,2013,36(8):26-32.DOI:10.11835/j.issn.1000-582X.2013.08.005.
[4] 李元杰,戴再平.一种改进的MNVS自适应滤波算法[J].华侨大学学报(自然科学版),2000,21(4):404-407.DOI:10.3969/j.issn.1000-5013.2000.04.016.
[5] QIU X,HANSEN C H.An Algorithm for active control of transformer noise with on-line cancellation path modelling based on the perturbation method[J].Journal of Sound and Vibration,2001,240(4):647-665.DOI:10.1006/jsvi.2000.3256.
[6] CHANG Chengyuan,LUOH F.Enhancement of active noise control using neural-based filtered-x algorithm[J].Journal of Sound and Vibration,2007,305(1/2):348-356.DOI: 10.1016/j.jsv.2007.04.007.
[7] TANG X L,LEE C M.Time-frequency-domain filtered-x LMS algorithm for active noise control[J].Journal of Sound and Vibration,2012,331(23):5002-5011.DOI:10.1016/j.jsv.2012.07.009.
[8] 李以农,张锋,王雷,等.次级通道在线辨识的齿轮啮合振动主动控制[J].振动与冲击,2013,32(16):7-12.DOI:10.3969/j.issn.1000-3835.2013.16.002.
[9] BO Zhong,SUN Chao,XU Yonghui,et al.A variable momentum factor filtered-x weighted accumulated LMS algorithm for narrowband active noise control system[J].Measurement,2014,48(2):282-291.DOI:10.1016/j.measurement.2013.11.010.
[10] SONG J M,PARK P G.An optimal variable step-size affine projection algorithm for the modified filtered-x active noise control[J].Signal Processing,2015,114:100-111.DOI:10.1016/j.sigpro.2015.02.005.
[11] KRSTAJIC B,ZECEVIC Z,USKOKOVIC Z.Increasing convergence speed of FxLMS algorithm in white noise environment[J].AEU-International Journal of Electronics and Communications,2013,67(10):848-853.DOI:10.1016/j.aeue.2013.04.012.
[12] 王兵树,姜萍,林永君,等.SIMULINK中自抗扰控制技术自定义模块库的创建[J].系统仿真学报,2010,22(3):610-615.DOI:10.16182/j.cnki.joss.2010.03.037.