参考文献/References:
[1] KONG Linghua,HONG Jialin,WANG Lan.Symplectic integrator for nonlinear high order Schrödinger equation with a trapped term[J].Journal of Computation and Applied Mathematics,2009,231(2):664-679.
[2] 黄浪扬.非线性四阶薛定谔方程的半显式多辛拟谱格式[J].华侨大学学报(自然科学版),2013,34(6):706-709.
[3] GONG Yuezheng,CAI Jiaxiang,WANG Yushun.Some new strure-preserving algorithms for general muti-symplectic formulations of Hamiltonian PDEs[J].Journal of Computational Physics,2014,279:80-102.
[4] CELLEDONI E,GRIMM V,MCLAREN D I,et al.Preserving energy resp.dissipation in numerical PDEs using the "average vector filed" method[J].Communications of Computational Physics,2012,231(20):6770-6789.
[5] 蒋朝龙,黄荣芳,孙建强.耦合非线性薛定谔方程的平均离散梯度法[J].工程数学学报,2014,31(5):707-718.
[6] QUISPEL G R W,MCLAREN D I.A new class of energy-preserving numerical integration methods[J].Journal of Physics A Mathematical and Theoretical,2008,41(4):045206(1-7).
[7] KARPMAN V I.Stabilization of soliton instabilities by higher-order dispersion:Fourth order nonlinear Schrödinger-type equations[J].Physical Review E,1996(53):1336-1339.
[8] KARPMAN V I,SHAGALOV A G.Stability of soliton described by nonlinear equation Schrödinger-type with higher-order disperion[J].Physical D: Nonlinear Phenomena,2000(144):194-210.
[9] PAUSADER B.The cubic fourth-order Schrödinger equation[J].Journal of Functional Analysis, 2009, 256(8):2473-2517.
[10] HONG Jialin,KONG Linghua.Novel multi-symplectic integrators for nonlinear fourth-order Schrödinger equation with trapped term[J].Communications in Computational Physics,2010,7(3):613-630.
[11] CHEN Jingbo,QIN Mengzhao.Multi-symplectic Fourier pseudospectral method for the nonlinear Schrödinger equation[J].Electronic Trasactions on Numerical Analysis Publisher,2001,12(11):193-204.