[1]王一帆,孙建强,陈宵玮.非线性四阶薛定谔方程的高阶保能量方法[J].华侨大学学报(自然科学版),2017,38(5):742-746.[doi:10.11830/ISSN.1000-5013.201611037]
 WANG Yifan,SUN Jianqiang,CHEN Xiaowei.High Order Energy Preserving Method for Nonlinear Fourth-Order Schrödinger Equation[J].Journal of Huaqiao University(Natural Science),2017,38(5):742-746.[doi:10.11830/ISSN.1000-5013.201611037]
点击复制

非线性四阶薛定谔方程的高阶保能量方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第38卷
期数:
2017年第5期
页码:
742-746
栏目:
出版日期:
2017-09-20

文章信息/Info

Title:
High Order Energy Preserving Method for Nonlinear Fourth-Order Schrödinger Equation
文章编号:
1000-5013(2017)05-0742-05
作者:
王一帆 孙建强 陈宵玮
海南大学 信息科学技术学院, 海南 海口 570228
Author(s):
WANG Yifan SUN Jianqiang CHEN Xiaowei
College of Information Science and Technology, Hainan University, Haikou 570228, China
关键词:
平均向量场方法 高阶保能量方法 非线性四阶薛定谔方程 谱方法
Keywords:
average vector field method energy-preserving method nonlinear fourth-order Schrö dinger equation spectral method
分类号:
O241.5
DOI:
10.11830/ISSN.1000-5013.201611037
文献标志码:
A
摘要:
利用四阶平均向量场方法和拟谱方法构造非线性四阶薛定谔方程的高阶保能量格式,并用构造的高阶保能量格式数值模拟方程孤立波的演化行为.结果表明:新的格式具有很好的稳定性,可以很好地模拟孤立波的演化行为,同时,保持了方程的离散能量守恒特性.
Abstract:
The fourth order energy preserving scheme for the nonlinear fourth-order Schrödinger equation is obtained by applying the fourth order average vector field method and the Fourier pseudo spectral method. The new fourth order energy preserving scheme is applied to simulate the solitary wave behaviors of the equation. Results show that the new scheme has nice stability and can well simulate the solitary wave evolution behaviors, moreover, it preserves the discrete energy conservation.

参考文献/References:

[1] KONG Linghua,HONG Jialin,WANG Lan.Symplectic integrator for nonlinear high order Schrödinger equation with a trapped term[J].Journal of Computation and Applied Mathematics,2009,231(2):664-679.
[2] 黄浪扬.非线性四阶薛定谔方程的半显式多辛拟谱格式[J].华侨大学学报(自然科学版),2013,34(6):706-709.
[3] GONG Yuezheng,CAI Jiaxiang,WANG Yushun.Some new strure-preserving algorithms for general muti-symplectic formulations of Hamiltonian PDEs[J].Journal of Computational Physics,2014,279:80-102.
[4] CELLEDONI E,GRIMM V,MCLAREN D I,et al.Preserving energy resp.dissipation in numerical PDEs using the "average vector filed" method[J].Communications of Computational Physics,2012,231(20):6770-6789.
[5] 蒋朝龙,黄荣芳,孙建强.耦合非线性薛定谔方程的平均离散梯度法[J].工程数学学报,2014,31(5):707-718.
[6] QUISPEL G R W,MCLAREN D I.A new class of energy-preserving numerical integration methods[J].Journal of Physics A Mathematical and Theoretical,2008,41(4):045206(1-7).
[7] KARPMAN V I.Stabilization of soliton instabilities by higher-order dispersion:Fourth order nonlinear Schrödinger-type equations[J].Physical Review E,1996(53):1336-1339.
[8] KARPMAN V I,SHAGALOV A G.Stability of soliton described by nonlinear equation Schrödinger-type with higher-order disperion[J].Physical D: Nonlinear Phenomena,2000(144):194-210.
[9] PAUSADER B.The cubic fourth-order Schrödinger equation[J].Journal of Functional Analysis, 2009, 256(8):2473-2517.
[10] HONG Jialin,KONG Linghua.Novel multi-symplectic integrators for nonlinear fourth-order Schrödinger equation with trapped term[J].Communications in Computational Physics,2010,7(3):613-630.
[11] CHEN Jingbo,QIN Mengzhao.Multi-symplectic Fourier pseudospectral method for the nonlinear Schrödinger equation[J].Electronic Trasactions on Numerical Analysis Publisher,2001,12(11):193-204.

备注/Memo

备注/Memo:
收稿日期: 2016-11-12
通信作者: 孙建强(1971-),男,教授,博士,主要从事微分方程数值解法的研究.E-mail:sunjq123@qq.com.
基金项目: 国家自然科学基金资助项目(11561018); 海南省自然科学基金资助项目(114003).
更新日期/Last Update: 2017-09-20