[1]蒋堃,陈永红,田晖,等.监控与预测的云资源优化配置[J].华侨大学学报(自然科学版),2017,38(4):573-578.[doi:10.11830/ISSN.1000-5013.201704024]
 JIANG Kun,CHEN Yonghong,TIAN Hui,et al.Cloud Resource Optimization Configuration Based on Cloud Monitoring and Prediction[J].Journal of Huaqiao University(Natural Science),2017,38(4):573-578.[doi:10.11830/ISSN.1000-5013.201704024]
点击复制

监控与预测的云资源优化配置()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第38卷
期数:
2017年第4期
页码:
573-578
栏目:
出版日期:
2017-07-10

文章信息/Info

Title:
Cloud Resource Optimization Configuration Based on Cloud Monitoring and Prediction
文章编号:
1000-5013(2017)04-0573-06
作者:
蒋堃 陈永红 田晖 王田 蔡奕侨
华侨大学 计算机科学与技术学院, 福建 厦门 361021
Author(s):
JIANG Kun CHEN Yonghong TIAN Hui WANG Tian CAI Yiqiao
College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China
关键词:
云计算 负载预测 自回归积分滑动平均模型 弹性计算 云监控
Keywords:
cloud computing workload prediction autoregressive integrated moving average model elastic calculation cloud monitoring
分类号:
TP391.4
DOI:
10.11830/ISSN.1000-5013.201704024
文献标志码:
A
摘要:
针对云环境下虚拟机资源在多数时间中处于闲置状态导致云资源利用率低的问题,设计一种云资源监控系统,并在云监控基础上提出一种基于自回归积分滑动平均(ARIMA)模型的动态负载预测与资源配置的方法.该方法利用虚拟机负载与配置的关系,通过预测负载情况,提前启动或者挂起虚拟机,提高云资源的利用率.研究结合OpenStack云环境提供的虚拟机,实现其下的云资源监控,预测和弹性分配功能.结果表明:该系统能准确预测虚拟机的需求量,所制定的资源弹性分配策略能够提高云资源的利用率,进一步节约成本.
Abstract:
In order to solve the problem under the cloud of virtual machine resources are idle most of the time, resulting in a cloud resource utilization is low, we designs a cloud resource monitoring system in this paper. And a dynamic load forecasting and resource allocation method is proposed based on cloud monitoring and a autoregressive integrated moving average(ARIMA)model. This method makes use of the relationship between the load and the virtual machine’s virtual hardware configuration by predicting loads and pre-starting or suspending a virtual machine to improve the utilization of cloud resources. Our studies realize monitoring, forecasting cloud resources and elastic cloud resources allocation based on the virtual machines in the OpenStack cloud environment. Finally, the result shows that: the system can accurately predict the demand for virtual machines and elastic cloud resources allocation policies can imporve the utilization of cloud resources and drive cost savings.

参考文献/References:

[1] 叶可江,吴朝晖,姜晓红,等.虚拟化云计算平台的能耗管理[J].计算机学报,2012,35(6):1262-1285.
[2] ROY N,ABHISHEK D,ANIRUDDHA G.Efficient autoscaling in the cloud using predictive models for workload forecasting[C]//International Conference on In Cloud Computing.Washington D C:IEEE Press,2011:500-507.
[3] XU Wei,XIAO Yunzhu,SHARAD S,et al.Predictive control for dynamic resource allocation in enterprise data centers[C]//Network Operations and Management Symposium.Busan:IEEE Press,2006:115-126.
[4] IMAM M,SHEIKH F M,RAHMAN R M,et al.Neural network and regression based processor load prediction for efficient scaling of grid and cloud resources[C]//14th International Conference on Computer and Information Technology.Dhaka:IEEE Press,2011:333-338.
[5] LI Jian,KAI Shuang,SEN Su,et al.Reducing operational costs through consolidation with resource prediction in the cloud[C]//12th IEEE/ACM International Symposium on Cloud and Grid Computing.Ottawa:IEEE Press,2012:793-798.
[6] GONG Zhenhuan,GU Xiaohui.Predictive elastic resource scaling for cloud systems[C]//International Conference onIn Network and Service Management.Paris:IEEE Press,2010:9-16.
[7] GIUSEPPE A,BOTTA A,de DONATO W,et al.Cloud Monitoring: Definitions, issues and future directions[C]//2012 IEEE 1st International Conference on In Cloud Networking.Paris:IEEE Press,2012:63-67.
[8] JOSEPHSEN D.Nagios: Building enterprise-grade monitoring infrastructures for systems and networks[M].Upper Saddle River:Prentice Hall Press,2013:15-22.
[9] GEORGE E P B,GWILYM M,JENKINS G C,et al.Time series analysis: Forecasting and control[M].Hoboken:John Wiley and Sons,2013:35-40.
[10] CALHEIROS R,MASOUMI E,RANJAN R,et al.Workload prediction using ARIMA model and its impact on cloud applications QoS[J].IEEE Transactions on Cloud Computing,2014,3(4):1-11.
[11] JAMES G.Numerical distribution functions for unit root and cointegration tests[J].Journal of Applied Econometrics,1996,11(6):601-618.
[12] 王燕.应用时间序列分析[M].北京:中国人民大学出版社,2008:164-169.

相似文献/References:

[1]王秉.高速收敛混沌粒子群算法的云计算任务调度[J].华侨大学学报(自然科学版),2015,36(6):650.[doi:10.11830/ISSN.1000-5013.2015.06.0650]
 WANG Bing.Cloud Computing Task Scheduling of High-Speed Convergence of Chaotic Particle Swarm Optimization[J].Journal of Huaqiao University(Natural Science),2015,36(4):650.[doi:10.11830/ISSN.1000-5013.2015.06.0650]

备注/Memo

备注/Memo:
收稿日期: 2014-12-30
通信作者: 陈永红(1974-),男,教授,博士,主要从事计算机网络和信息安全的研究.E-mail:djandcyh@163.com.
基金项目: 国家自然科学基金面上资助项目(61370007); 福建省自然科学基金面上资助项目(2013J01241); 华侨大学国家自然科学基金培育项目(JB-ZR1131); 华侨大学高层次人才科研启动项目(10Y0199)
更新日期/Last Update: 2017-07-20