[1]陈文雄.具有渐近二次项的一阶离散型哈密尔顿系统同宿轨的存在性[J].华侨大学学报(自然科学版),2017,38(3):424-429.[doi:10.11830/ISSN.1000-5013.201703025]
 CHEN Wenxiong.Existence of Homoclinic Orbit in First Order Discrete Hamiltonian System With Asymptotically Quadratic Term[J].Journal of Huaqiao University(Natural Science),2017,38(3):424-429.[doi:10.11830/ISSN.1000-5013.201703025]
点击复制

具有渐近二次项的一阶离散型哈密尔顿系统同宿轨的存在性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第38卷
期数:
2017年第3期
页码:
424-429
栏目:
出版日期:
2017-05-20

文章信息/Info

Title:
Existence of Homoclinic Orbit in First Order Discrete Hamiltonian System With Asymptotically Quadratic Term
文章编号:
1000-5013(2017)03-0424-06
作者:
陈文雄
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
CHEN Wenxiong
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
哈密尔顿系统 离散型 同宿轨 渐近二次 临界点理论
Keywords:
Hamiltonian system discrete type homoclinic orbit asymptotically quadratic critical point theory
分类号:
O175.7
DOI:
10.11830/ISSN.1000-5013.201703025
文献标志码:
A
摘要:
讨论具有渐近二次项的一阶离散型哈密尔顿系统同宿轨的存在性.在适当的条件下,利用强不定泛函的临界点定理得到渐近二次的哈密尔顿系统至少有一个非平凡的同宿轨.
Abstract:
This paper discusses the existence of homoclinic orbit in first order discrete Hamiltonian system with asymptotically quadratic term. Under certain assumptions, we obtain that the asymptotical Hamiltonian system has at least one non-trivial homoclinic orbit via critical point theory for strongly indefinite functional.

参考文献/References:

[1] BARTSCH T,DING Yanheng.Homoclinic solutions of an infinite-dimensional Hamiltonian system[J].Math Z,2002,240(2):289-310.
[2] ARIOLI G,SZULKIN A.Homoclinic solutions of Hamiltonian system with symmetry[J].Journal of Differential Equations,1999,158(158):291-313.
[3] ZELSTI V C,EKELAND,SÉRÉ E.A variational approach to homolinic orbits in Hamiltonian systems[J].Math Ann,1990,288(1):133-160.
[4] DING Yanheng,GIRARDI M.Infinitely many homoclinic orbits of a Hamiltonian system with symmetry[J].Nonlinear Anal,1999,38(3):391-415.
[5] DING Yanheng,WILLEM M.Homoclinic orbits of a Hamiltonian system[J]. Z Angew Math Phys, 1999, 50(5):759-778.
[6] HOFER H,WYSOCKI K.First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems[J].Math Ann,1990,288(1):483-503.
[7] SÉRÉ E.Existence of infinitely many homoclinic orbits in Hamiltonian systems[J].Math Z,1992,209(1):27-42.
[8] SZULKIN A,ZOU Wenming.Homoclinic orbits for asymptotically linear Hamiltonian systems[J].J Funct Anal,2001,187(1):25-41.
[9] TANAKA K.Homoclinic orbits in a first order superquadratic Hamiltonian system: Convergence of subharmonic orbits[J].J Differ Equations,1991,94(2):315-339.
[10] DING Y H.Multiple homoclinic in a Hamiltonian system with asymptotically or super linear terms[J].Comm Cont Math,2006,8(4):453-480.
[11] DING Yanheng,JEANJEAN L.Homoclinic orbits for a nonperiodic Hamiltonian system[J].J Differ Equations,2007,237(2):473-490.
[12] DING Yanheng,LEE C.Existence and exponential decay of homoclinics in a nonperiodic superquadratic Hamiltonian system[J].J Differ Equations,2009,246(7):2829-2848.
[13] 梁小花,张金顺.一个N维Hamilton系统的Painleve’分析与精确解[J].华侨大学学报(自然科学版),2007,28(3):327-329.
[14] CHEN Wenxiong,YANG Minbo,DING Yanheng.Homoclinic orbits of first order discrete Hamiltonian systems with super linear terms[J].Science China Mathematics,2011,54(12):2583-2596.
[15] YU Jianshe,BIN Honghua,GUO Zhiming.Multiple periodic solutions for discrete Hamiltonian systems[J].Nonlinear Anal,2007,66(7):1498-1512.
[16] GUO Zhiming,YU Jianshe.Periodic and subharmonic solutions for superquadratic discrete Hamiltonian systems[J].Nonlinear Anal,2003,55(7/8):969-983.
[17] ZHENG Bo.Multiple periodic solutions to nonlinear discrete Hamiltonian systems[J].Advancesin Difference Equations,2008,2007(1):1-13.
[18] DENG Xiaoqing.Periodic solutions for subquadratic discrete Hamiltonian systems[J].Advancesin Difference Equations,2008,2007(1):1-16.
[19] DENG Xiaoqing,CHENG Gong.Homoclinic orbits for second order discrete Hamiltonian systems with potential changing sign[J].Acta Appl Math,2008,103(3):301-314.
[20] AHLBRANDT C D.Equivalence of discrete Euler equations and discrete Hamiltonian systems[J].J Math Anal Appl,1993,180(2):498-517.
[21] BOHNER M.Linear Hamiltonian difference systems: Disconjugacy and Jacobi-type conditions[J].J Math Anal Appl,1996,199(3):804-826.
[22] CHEN S.Disconjugacy, disfocality, and oscillation of second order difference equations[J].J Differ Equations,1994,107(107):383-394.
[23] ERBE L H,YAN Pengxiang.Disconjugacy for linear Hamiltonian difference systems[J].J Math Anal Appl,1992,167(2):355-367.
[24] HARTMAN P.Difference equations: Disconjugacy, principal solutions, Green’s functions, complete monotonicity[J].Trans Amer Math Soc,1978,246(12):1-30.
[25] BARTSCH T,DING Yanheng.Deformation theorems on non-metrizable vector spaces and applications to critical point theory[J].Math Nachr,2006,279(12):1267-1288.

备注/Memo

备注/Memo:
收稿日期: 2016-09-18
通信作者: 陈文雄(1981-),男,讲师,博士,主要从事线性分析的研究.E-mail:cwx2636@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(11226115)
更新日期/Last Update: 2017-05-20