参考文献/References:
[1] BARTSCH T,DING Yanheng.Homoclinic solutions of an infinite-dimensional Hamiltonian system[J].Math Z,2002,240(2):289-310.
[2] ARIOLI G,SZULKIN A.Homoclinic solutions of Hamiltonian system with symmetry[J].Journal of Differential Equations,1999,158(158):291-313.
[3] ZELSTI V C,EKELAND,SÉRÉ E.A variational approach to homolinic orbits in Hamiltonian systems[J].Math Ann,1990,288(1):133-160.
[4] DING Yanheng,GIRARDI M.Infinitely many homoclinic orbits of a Hamiltonian system with symmetry[J].Nonlinear Anal,1999,38(3):391-415.
[5] DING Yanheng,WILLEM M.Homoclinic orbits of a Hamiltonian system[J]. Z Angew Math Phys, 1999, 50(5):759-778.
[6] HOFER H,WYSOCKI K.First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems[J].Math Ann,1990,288(1):483-503.
[7] SÉRÉ E.Existence of infinitely many homoclinic orbits in Hamiltonian systems[J].Math Z,1992,209(1):27-42.
[8] SZULKIN A,ZOU Wenming.Homoclinic orbits for asymptotically linear Hamiltonian systems[J].J Funct Anal,2001,187(1):25-41.
[9] TANAKA K.Homoclinic orbits in a first order superquadratic Hamiltonian system: Convergence of subharmonic orbits[J].J Differ Equations,1991,94(2):315-339.
[10] DING Y H.Multiple homoclinic in a Hamiltonian system with asymptotically or super linear terms[J].Comm Cont Math,2006,8(4):453-480.
[11] DING Yanheng,JEANJEAN L.Homoclinic orbits for a nonperiodic Hamiltonian system[J].J Differ Equations,2007,237(2):473-490.
[12] DING Yanheng,LEE C.Existence and exponential decay of homoclinics in a nonperiodic superquadratic Hamiltonian system[J].J Differ Equations,2009,246(7):2829-2848.
[13] 梁小花,张金顺.一个N维Hamilton系统的Painleve’分析与精确解[J].华侨大学学报(自然科学版),2007,28(3):327-329.
[14] CHEN Wenxiong,YANG Minbo,DING Yanheng.Homoclinic orbits of first order discrete Hamiltonian systems with super linear terms[J].Science China Mathematics,2011,54(12):2583-2596.
[15] YU Jianshe,BIN Honghua,GUO Zhiming.Multiple periodic solutions for discrete Hamiltonian systems[J].Nonlinear Anal,2007,66(7):1498-1512.
[16] GUO Zhiming,YU Jianshe.Periodic and subharmonic solutions for superquadratic discrete Hamiltonian systems[J].Nonlinear Anal,2003,55(7/8):969-983.
[17] ZHENG Bo.Multiple periodic solutions to nonlinear discrete Hamiltonian systems[J].Advancesin Difference Equations,2008,2007(1):1-13.
[18] DENG Xiaoqing.Periodic solutions for subquadratic discrete Hamiltonian systems[J].Advancesin Difference Equations,2008,2007(1):1-16.
[19] DENG Xiaoqing,CHENG Gong.Homoclinic orbits for second order discrete Hamiltonian systems with potential changing sign[J].Acta Appl Math,2008,103(3):301-314.
[20] AHLBRANDT C D.Equivalence of discrete Euler equations and discrete Hamiltonian systems[J].J Math Anal Appl,1993,180(2):498-517.
[21] BOHNER M.Linear Hamiltonian difference systems: Disconjugacy and Jacobi-type conditions[J].J Math Anal Appl,1996,199(3):804-826.
[22] CHEN S.Disconjugacy, disfocality, and oscillation of second order difference equations[J].J Differ Equations,1994,107(107):383-394.
[23] ERBE L H,YAN Pengxiang.Disconjugacy for linear Hamiltonian difference systems[J].J Math Anal Appl,1992,167(2):355-367.
[24] HARTMAN P.Difference equations: Disconjugacy, principal solutions, Green’s functions, complete monotonicity[J].Trans Amer Math Soc,1978,246(12):1-30.
[25] BARTSCH T,DING Yanheng.Deformation theorems on non-metrizable vector spaces and applications to critical point theory[J].Math Nachr,2006,279(12):1267-1288.