[1]谭秋月,孙平安,林姝妤.关于Wendt操作对链环交叉数的进一步结论[J].华侨大学学报(自然科学版),2017,38(2):276-280.[doi:10.11830/ISSN.1000-5013.201702027]
 TAN Qiuyue,SUN Pingan,LIN Shuyu.Further Conclusion of Crossing Number of Links Based on Wendt Operation[J].Journal of Huaqiao University(Natural Science),2017,38(2):276-280.[doi:10.11830/ISSN.1000-5013.201702027]
点击复制

关于Wendt操作对链环交叉数的进一步结论()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第38卷
期数:
2017年第2期
页码:
276-280
栏目:
出版日期:
2017-03-20

文章信息/Info

Title:
Further Conclusion of Crossing Number of Links Based on Wendt Operation
文章编号:
1000-5013(2017)02-0276-05
作者:
谭秋月1 孙平安2 林姝妤3
1. 武夷学院 数学与计算机学院, 福建 南平 354300;2. 武夷学院 实验室管理中心, 福建 南平 354300;3. 厦门大学 数学科学学院, 福建 厦门 361000
Author(s):
TAN Qiuyue1 SUN Ping’an2 LIN Shuyu3
1. School of Mathematics Science and Computer, Wuyi University, Nanping 354300, China; 2. Laboratory Management Center, Wuyi University, Nanping 354300, China; 3. School of Mathematical Sciences, Xiamen University, Xiamen 361000, China
关键词:
纽结 链环 Wendt操作 解结数 交叉指标
Keywords:
knot link Wendt operation unknotting number crossing number
分类号:
O157.5
DOI:
10.11830/ISSN.1000-5013.201702027
文献标志码:
A
摘要:
研究纽结的一种解结操作——Wendt操作对链环交叉数的影响.计算纽结表中交叉指标不超过10的纽结,以及交叉指标不超过9的2分支链环的拟解结数,得到Wendt操作对这类链环的交叉数减二的结论.最后,通过投影图给予证明.
Abstract:
The effect of a single splitting operation, Wendt operation on the crossing number of the link diagrams is researched. We calculate the Quasi-splitting number of these two numbers for knots, which are with crossing number no more than 10, and with crossing number no more than 9 and 2-comonent links in the Knot table. One conclusion is that the Wendt operation can make the crossing number of these link diagrams minus two. In the last, we give a strict graph-theoretical proof by the projection drawings.

参考文献/References:

[1] SCHARLEMANN M G.Unknotting number one knots are prime[J].Invent Math,1985,82(1):37-55.
[2] KAUFFMAN L H.State models and the Jones polynomial[J].Topology,1987,26(3):395-407.
[3] MURASUGI K.Jones polynomials and classical conjectures in knot theory[J].Topology,1987,26(2):187-194.
[4] THISTILETHWAITE M B.A spanning tree expansion of the Jones polynomial[J].Topology,1987,26(3):297-309.
[5] KAUFFMAN L H.New invariants in the theory of knots[J].Amer Math Monthly,1988(95):195-242.
[6] KAUFFMAN L H.A Tutte polynomial for signed graphs[J].Discrete Appl Math,1989,25(1/2):105-127.
[7] BONDY J A,MURTY U S R.Graph theory and its applications[M].London:The Macmillan Press Ltd,1976:1-40.
[8] KIRBY R.Problems in low-dimensional topology[C]//Georgia Topology Conference.Providence:[s.n.],1996:35-473.
[9] KAWAMURA T.The unknotting number of 10139 and 10152 are 4[J].Osaka J Math,1998,35(3):539-546.
[10] ADAMS C C.The knot book[M].New York:American Mathematical Society Providence Ri,1994:307.
[11] STOIMENOW A.Polynomial values, the linking form, and unknotting numbers[J].Math Res Lett,2004,11(5/6):755-769.
[12] STOIMENOW A.Positive knots, closed braids and the Jones polynomial[J].Annali Della Scuola Normale Superiore Di Pisa Classe Dienze,1998,2(2):237-285.
[13] JONES V F R.A polynomial invariant for knots via von Neumann algebras[J].Bull Amer Math Soc,1985,12(1):103-111.
[14] 谭秋月,孙平安,林姝妤.Wendt操作对纽结和链环影响的若干规律[J].石家庄学院学报,2015,17(6):61-66.
[15] 李景文,吕楠,陆妍玲,等.对象化BR-TIN模型三维地理信息组织方法[J].华侨大学学报(自然科学版),2015,36(4):383-387.
[16] 汪秋分,宋海洲.图的拉普拉斯谱半径对应的特征向量性质及其应用[J].华侨大学学报(自然科学版),2014,35(1):107-111.

备注/Memo

备注/Memo:
收稿日期: 2017-02-14
通信作者: 谭秋月(1980-),女,副教授,主要从事图论、离散数学的研究.E-mail:tqyspa@163.com.
基金项目: 福建省教育厅科技项目(JA1551); 福建省大学生创新创业训练计划项目(201510397029); 武夷学院科研基金资助项目(XL201409)
更新日期/Last Update: 2017-03-20