[1]方瑞明,吴敏玲,王彦东,等.采用动态灰聚类算法的风电场动态等值方法[J].华侨大学学报(自然科学版),2017,38(2):218-224.[doi:10.11830/ISSN.1000-5013.201702016]
 FANG Ruiming,WU Minling,WANG Yandong,et al.Dynamic Equivalence of Wind Farm Based on Dynamic Gray Cluster Algorithm[J].Journal of Huaqiao University(Natural Science),2017,38(2):218-224.[doi:10.11830/ISSN.1000-5013.201702016]
点击复制

采用动态灰聚类算法的风电场动态等值方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第38卷
期数:
2017年第2期
页码:
218-224
栏目:
出版日期:
2017-03-20

文章信息/Info

Title:
Dynamic Equivalence of Wind Farm Based on Dynamic Gray Cluster Algorithm
文章编号:
1000-5013(2017)02-0218-07
作者:
方瑞明 吴敏玲 王彦东 尚荣艳 彭长青
华侨大学 信息科学与工程学院, 福建 厦门 361021
Author(s):
FANG Ruiming WU Minling WANG Yandong SHANG Rongyan PENG Changqing
College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
关键词:
动态灰关联分析 聚类算法 风电场 机群划分 动态等值
Keywords:
dynamic gray correlation analysis cluster algorithm wind farm wind turbine grouping dynamic equivalence
分类号:
TM715
DOI:
10.11830/ISSN.1000-5013.201702016
文献标志码:
A
摘要:
针对风电机组运行状况间具有动态灰色关联性的特点,提出一种基于动态灰聚类算法的风电场动态等值方法.首先,根据实测运行数据对风电机组间的关联性进行分析,并确定数据样本的跨度选取时长.然后,采用动态灰关联分析,构造一个可以体现风电机组运行状况间动态灰色关联性的关联度矩阵G;进而以G中的样本组作为聚类指标进行K均值聚类,得出更合理的机群划分结果.最后,采用容量加权法计算机群等值参数,完成风电场的动态等值.仿真实验结果表明:所建立的动态等值模型与详细模型较接近,能够较准确地反映风电场的动态响应特性.
Abstract:
The characteristics of dynamic gray correlation among the different operation conditions of wind turbines are considered, and then a method of dynamic equivalence for wind farm based on dynamic gray clustering algorithm is proposed. Firstly, the correlation relationship among the wind turbines is analyzed by using the measured data, and the time span of data sample is determined. Secondly, a correlation matrix, named G, is constructed based on dynamic gray correlation analysis method, which can describe the characteristics of dynamic gray correlation among the different conditions of wind turbines. Thirdly, the K-means cluster method is adopted to divide all wind turbines in the wind farm into several groups. Meanwhile, the sample groups in G are used as clustering index. Finally, the equivalent parameters of each group are calculated by using the capacity weighting method, and a dynamic equivalent model of wind farm is obtained. Simulation results carried on a real wind farm indicate that the obtained model can describe the dynamic response characteristics of the wind farm with the accuracy close to the detailed model.

参考文献/References:

[1] 李洪美,万秋兰,向昌明.考虑风速的风电场等值方法[J].电力自动化设备,2013,33(1):121-123,159.
[2] ZOU Jianxiao,PENG Chao,XU Hongbing,et al.A Fuzzy clustering algorithm-based dynamic equivalent modeling method for wind farm with DFIG[J].IEEE Transactions on Energy Conversion,2015,30(4):1329-1337.
[3] 葛江北,周明,李庚银.大型风电场建模综述[J].电力系统保护与控制,2013,41(17):146-153.
[4] CHOWDHURY M A,HOSSEINZADEH N,BILLAH M M.Dynamic DFIG wind farm model with an aggregation technique[C]//Electrical and Computer Engineering.Dhaka:IEEE Press,2010:330-333.
[5] 刘力卿,李秀锦,余洋,等.变速恒频双馈风电机组风电场动态出力特性建模方法[J].电力科学与工程,2011,27(12):7-11.
[6] 陈树勇,王聪,申洪,等.基于聚类算法的风电场动态等值[J].中国电机工程学报,2012,32(4):11-19.
[7] ALI M,ILIE I S,MILANOVIC J V.Wind farm model aggregation using probabilistic clustering[J].IEEE Transactions on Power Systems,2013,28(1):309-316.
[8] 范国英,史坤鹏,郑太一,等.风电场集群接入系统后的聚类分析[J].电网技术,2011,35(11):62-66.
[9] 林俐,陈迎.基于扩散映射理论的谱聚类算法的风电场机群划分[J].电力自动化设备,2013,339(6):113-118.
[10] ZHAO Zhouli,YANG Ping.Dynamic equivalent modeling of wind farm with double fed induction wind generator based on operating data[C]//Power Electronics Systems and Applications.Hong Kong:IEEE Press,2013:1-6.
[11] 苏勋文,米增强.基于运行数据的风电机组建模方法[J].电力系统保护与控制,2010,38(9):50-55.
[12] 林俐,潘险险.基于分裂层次半监督谱聚类算法的风电场机群划分方法[J].电力自动化设备,2015,35(2):8-14.
[13] 梁颖,方瑞明.基于SCADA和支持向量回归的风电机组状态在线评估方法[J].电力系统自动化,2013,37(14):7-31.
[14] 杨良军,熊小伏,张媛.基于灰色关联度和理想解法的电力设备状态维修策略[J].电力系统保护与控制,2009,37(18):74-78.
[15] 史书良.统计学原理[M].北京:清华大学出版社,2009:227-234.
[16] 米增强,苏勋文,杨奇逊,等.风电场动态等值模型的多机表征方法[J].电工技术学报,2010,25(5):162-169.
[17] 王碧阳,王锡凡,王秀丽,等.考虑集电系统的风电场可靠性评估[J].中国电机工程学报,2015,35(9):2105-2111.
[18] MULJADI E,BUTTERFIELD C P,ELLIS A,et al.Equivalencing the collector system of a large wind power plant[C]//IEEE Power Engineering Society General Meeting.Montreal:IEEE Press,2006:1-6.

相似文献/References:

[1]朱婵,许龙飞.聚类算法在基因表达数据分析中的应用[J].华侨大学学报(自然科学版),2005,26(1):7.[doi:10.3969/j.issn.1000-5013.2005.01.002]
 Zhu Chan,Xu Longfei.Application of Clustering Algorithms to the Analysis of Gene Expression Data[J].Journal of Huaqiao University(Natural Science),2005,26(2):7.[doi:10.3969/j.issn.1000-5013.2005.01.002]
[2]林杰,陈崇成.采用代表点插值的道路网提取方法[J].华侨大学学报(自然科学版),2018,39(1):98.[doi:10.11830/ISSN.1000-5013.201701112]
 LIN Jie,CHEN Chongcheng.Road Network Extraction Method Using Representative Points Interpolation[J].Journal of Huaqiao University(Natural Science),2018,39(2):98.[doi:10.11830/ISSN.1000-5013.201701112]

备注/Memo

备注/Memo:
收稿日期: 2016-04-29
通信作者: 方瑞明(1972-),男,教授,博士,主要从事电力设备在线监测与故障诊断的研究.E-mail:fangrm@126.com.
基金项目: 国家自然科学基金资助项目(51577050); 福建省厦门市重大科技创新平台资助项目(3502Z20111008); 华侨大学研究生科研创新能力培育项目(1400201013)
更新日期/Last Update: 2017-03-20