[1]魏文红,秦勇.采用多目标差分进化的移动Ad Hoc网络节能路由算法[J].华侨大学学报(自然科学版),2016,37(5):654-658.[doi:10.11830/ISSN.1000-5013.201605026]
 WEI Wenhong,QIN Yong.Energy Efficient Routing Optimization Algorithm for MANET Based Multi-Objective Differential Evolution[J].Journal of Huaqiao University(Natural Science),2016,37(5):654-658.[doi:10.11830/ISSN.1000-5013.201605026]
点击复制

采用多目标差分进化的移动Ad Hoc网络节能路由算法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第37卷
期数:
2016年第5期
页码:
654-658
栏目:
出版日期:
2016-09-20

文章信息/Info

Title:
Energy Efficient Routing Optimization Algorithm for MANET Based Multi-Objective Differential Evolution
文章编号:
1000-5013(2016)05-0654-05
作者:
魏文红 秦勇
东莞理工学院 计算机学院, 广东 东莞 523808
Author(s):
WEI Wenhong QIN Yong
School of Computer, Dongguan University of Technology, Dongguan 523808, China
关键词:
多目标 差分进化 移动Ad Hoc 路由 生存时间
Keywords:
multi-objective differential evolution mobile Ad Hoc routing lifetime
分类号:
TP393
DOI:
10.11830/ISSN.1000-5013.201605026
文献标志码:
A
摘要:
为了在节点的能量消耗和最优路由之间找到一个平衡,根据多目标差分进化算法原理,提出一种基于多目标差分进化的移动Ad Hoc网络节能路由算法.该算法把路由代价和网络生存时间作为2个优化目标,采用适应值变换的约束处理技术、非支配排序和拥挤距离技术进行优化.在优化过程中,提出适合差分进化算法的变异、交叉和选择策略.结果表明:该算法在网络生存时间和最优路由方面具有较好的优势,并保证了较高的包传递率.
Abstract:
To find a balance between energy consumption and optimal routing, according to the principle of multi-objective differential evolution algorithm, an energy efficient routing algorithm for MANET based on multi-objective differential evolution. In this algorithm, the shortest routing paths and network lifetime are considered as two objectives, and the fitness transformation, non-dominated sorting and crowding distance technologies are adopted to optimize the above objectives. In the optimization process, the modified mutation, crossover and selection operations in differential evolution are proposed for. Compared with other routing optimization algorithms, this algorithm can achieve better result between network lifetime and optimal routing, and provide higher packet transmission.

参考文献/References:

[1] MURTHY J J,GARCIA L A.A routing protocol for packet radio networks[C]//1st Annual ACM International Conference on Mobile Computing and Networking.New York:ACM Press,1995:86-95.
[2] JOHNSON D B,MALTZ A D,BROCH J.The dynamic source routing protocol for multi-hop wireless Ad Hoc networks[M].New York:ACM Press,2001:139-172.
[3] PERKINS C E,ROYER E M.Ad hoc on demand distance vector(AODV)routing[C]//2nd IEEE Workshop on Mobile Computing Systems and Applications.Piscataway:IEEE Press,1999:90-100.
[4] SHOKRANI H,SAM J.A survey of ant-based routing algorithms for mobile Ad-Hoc networks[C]//The International Conference on Signal Processing Systems.Piscatawa:IEEE Press,2009:323-329.
[5] WANG Jianping,OSAGIE E,THULASIRAMAN P,et al.A hybrid ant colony optimization routing algorithm for mobile Ad Hoc network[J].Ad Hoc Networks,2009,7(4):690-705.
[6] 周少琼,徐祎,姜丽,等.蚁群优化算法在Ad Hoc网络路由中的应用[J].计算机应用,2011,31(2):332-334.
[7] KHOSROWSHAHI-ASL E,MAJID N,ATIEH S P.A dynamic ant colony based routing algorithm for mobile Ad-Hoc networks[J].Journal of Information Science and Engineering,2011,27(5):1581-1596.
[8] CHATTERJEE S,SWAGATAM D.Ant colony optimization based enhanced dynamic source routing algorithm for mobile Ad-Hoc network[J].Information Sciences,2015,295:67-90.
[9] KRISHNA P V,SARITHA V,VEDHA G,et al.Quality-of-service-enabled ant colony-based multipath routing for mobile Ad Hoc networks[J].IET Communications,2012,6(1):76-83.
[10] ZHOU Jipeng,WANG Xuefeng,TAN Haisheng,et al.Ant colony-based energy control routing protocol for mobile Ad Hoc networks[C]//Wireless Algorithms, Systems, and Applications.Berlin:Springer,2015:845-853.
[11] 詹思瑜,李建平.基于遗传算法的Ad Hoc 路由协议优化[J].小型微型计算机系统,2012,33(1):24-27.
[12] 朱晓建,沈军.基于粒子群优化的Ad Hoc 网络最小能耗多播路由算法[J].通信学报,2012,33(3):52-58.
[13] DEEPALAKSHMI P,SHANMUGASUNDARAM R.An ant colony-based multi objective quality of service routing for mobile Ad Hoc networks[J].EURASIP Journal on Wireless Communications and Networking,2011,2011(1):1-12.
[14] DERRAC J,GARCLA S,MOLINA D,et al.A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J].Swarm and Evolutionary Computation,2011,1(1):3-18.

相似文献/References:

[1]雷宇翔,缑锦,王成,等.DE-ICA优化算法在工作模态参数识别的应用[J].华侨大学学报(自然科学版),2018,39(2):286.[doi:10.11830/ISSN.1000-5013.201606108]
 LEI Yuxiang,GOU Jin,WANG Cheng,et al.Application of DE-ICA Optimization Algorithm in Operating Modal of Parameter Identification[J].Journal of Huaqiao University(Natural Science),2018,39(5):286.[doi:10.11830/ISSN.1000-5013.201606108]

备注/Memo

备注/Memo:
收稿日期: 2016-02-03
通信作者: 魏文红(1977-),男,副教授,博士,主要从事网络与并行分布计算、智能优化处理的研究.E-mail:weiwh@dgut.edu.cn.
基金项目: 国家自然科学基金资助项目(61103037, 61300198); 广东省自然科学基金资助项目(S2013010011858); 广东省高校科技创新项目(2013KJCX0178)
更新日期/Last Update: 2016-09-20