[1]杨春华,杨玲.偏最小二乘建模及其多重共线抑制能力分析[J].华侨大学学报(自然科学版),2016,37(4):523-526.[doi:10.11830/ISSN.1000-5013.201604027]
 YANG Chunhua,YANG Ling.Partial Least Squares Modeling andIts Multiple Collinear Inhibition Capability Analysis[J].Journal of Huaqiao University(Natural Science),2016,37(4):523-526.[doi:10.11830/ISSN.1000-5013.201604027]
点击复制

偏最小二乘建模及其多重共线抑制能力分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第37卷
期数:
2016年第4期
页码:
523-526
栏目:
出版日期:
2016-07-04

文章信息/Info

Title:
Partial Least Squares Modeling andIts Multiple Collinear Inhibition Capability Analysis
文章编号:
1000-5013(2016)04-0523-04
作者:
杨春华 杨玲
保山学院 数学学院, 云南 保山 678000
Author(s):
YANG Chunhua YANG Ling
School of Mathematics, Baoshan University, Baoshan 678000, China
关键词:
偏最小二乘 数学归纳法 多重共线 回归分析
Keywords:
partial least squares mathematical induction multiple collinear regression analysis
分类号:
O625.63
DOI:
10.11830/ISSN.1000-5013.201604027
文献标志码:
A
摘要:
首先,分析偏最小二乘法解决问题的思路,进而从数学角度刻画偏最小二乘法的四步建模过程.然后,利用数学归纳法证实偏最小二乘法对多重共线的抑制能力.最后,以某地区的供水能力评价为研究实例,证实偏最小二乘法的有效性.结果表明:偏最小二乘法完全适用于多变量复杂关系的求解.
Abstract:
Firstly, by analyzing the thinking route to solve the problem of the partial least square method, the authors describe four modeling steps to the partial least square method. Finally, we confirmed the inhibition ability of partial least squares method for multiple collinear by using the mathematical induction method. By evaluating the water supply capacity of an area as a case study, it really shows the validity of the partial least squares method. Results in this paper shows that partial least squares method is completely applicable to the solution of multi variable complex relationships.

参考文献/References:

[1] ADRIANO D A G,SCHENONE A V.Unfolded partial least squares/residual bilinearization combined with the successive projections algorithm for interval selection: Enhanced excitation-emission fluorescence data modeling in the presence of the inner filter effect[J].Analytical and Bioanalytical Chemistry,2015,22(5):30-37.
[2] MOKHTARI A,KEYVANFARD M,EMAMI I.Simultaneous chemiluminescence determination of citric acid and oxalic acid using multi-way partial least squares regression[J].RSC Advances,2015,37(5):29214-29221.
[3] ELDEN L.Computing frechet derivatives in partial least squares regression[J].Linear Algebra and Its Applications,2015,473(11):316-338.
[4] ADJORLOLO C,MUTANGA O,CHO M A.Predicting C3 and C4 grass nutrient variability using in situ canopy reflectance and partial least squares regression[J].International Journal of Remote Sensing,2015,36(6):1743-1761.
[5] TZANAKAKIS V A,MAUROMOUSTAKOS A,ANGELAKIS A N.Prediction of biomass production and nutrient uptake in land application using partial least squares regression analysis[J].Water,2015,7(1):1-11.
[6] 彭卓华,辛会敏.矩阵方程∑li=1AiXiBi=C的最小二乘广义双对称解[J].湘潭大学学报(自然科学版),2014,36(1):16-20.
[7] KUANG Boyan,TEKIN Y,MOUAZEN A M.Comparison between artifical neural network and partial least squares for on-line visible and near infrared spectroscopy measurement of soil organic carbon pH and clay content[J].Soil and Tillage Research,2015,146(8):243-252.
[8] 吴瑞红,王亚丽,张环冲,等.一种基于最小二乘支持向量机的葡萄酒品质评判模型[J].华侨大学学报(自然科学版),2013,34(1):30-35.
[9] 魏引尚,郑活勃,王宁.采空区自燃“三带”特征的最小二乘法分析[J].西安科技大学学报,2015,35(2):159-164.
[10] 胡德,郭刚正.最小二乘法、矩法和最大似然法的应用比较[J].统计与决策,2015,33(9):20-24.
[11] 宋媛媛,王萍,张庆芳,等.基于最小二乘法的TD-LTE传播模型校正研究[J].电子测量技术,2015,38(1):123-125.
[12] 李鑫,张跃强,刘进博,等.基于直线段对应的相机位姿估计直接最小二乘法[J].光学学报,2015,44(6):203-213.
[13] 陈明晶,方源敏,陈杰.最小二乘法和迭代法圆曲线拟合[J].测绘科学,2016,41(1):194-197.
[14] 王鹏,刁山菊,张季谦.基于最小二乘法的单摆实验数据处理[J].安庆师范学院学报(自然科学版),2015,36(1):136-139.
[15] 张开远,周孟然,闫鹏程,等.基于最小二乘法的pH值温度补偿系统设计[J].传感器与微系统,2015,34(5):109-111.

相似文献/References:

[1]庄天山,陈祖礼.任意k+1个相邻自然数k次方的k次差等于k阶乘[J].华侨大学学报(自然科学版),2000,21(2):121.[doi:10.3969/j.issn.1000-5013.2000.02.003]
 Zhuang Tianshan,Chen Zuli.k Difference of k Power of Arbitrary k+1 Adjacent Natural Numbers Equal to k Factorial[J].Journal of Huaqiao University(Natural Science),2000,21(4):121.[doi:10.3969/j.issn.1000-5013.2000.02.003]

备注/Memo

备注/Memo:
收稿日期: 2016-05-05
通信作者: 杨春华(1973-),男,副教授,主要从事最优化理论及其应用的研究.E-mail:378667756@qq.com.
基金项目: 云南省教育厅科学研究基金资助项目(2012Y258)
更新日期/Last Update: 2016-07-20