[1]刘肖萍,林毅.Cry1A型杀虫晶体蛋白活性区的空间结构比较分析[J].华侨大学学报(自然科学版),2016,37(4):465-470.[doi:10.11830/ISSN.1000-5013.201604015]
 LIU Xiaoping,LIN Yi.Structural Comparison of Toxic Core of Cry1A-Type Insecticidal Crystal Proteins[J].Journal of Huaqiao University(Natural Science),2016,37(4):465-470.[doi:10.11830/ISSN.1000-5013.201604015]
点击复制

Cry1A型杀虫晶体蛋白活性区的空间结构比较分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第37卷
期数:
2016年第4期
页码:
465-470
栏目:
出版日期:
2016-07-04

文章信息/Info

Title:
Structural Comparison of Toxic Core of Cry1A-Type Insecticidal Crystal Proteins
文章编号:
1000-5013(2016)04-0465-06
作者:
刘肖萍 林毅
华侨大学 化工学院, 福建 厦门 361021
Author(s):
LIU Xiaoping LIN Yi
College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
关键词:
苏云金杆菌 Cry1A型杀虫晶体蛋白 空间结构差异 构效关系
Keywords:
Bacillus thuringiensis Cry1A-type insecticidal crystal proteins structural differences structure-function relationships
分类号:
S433
DOI:
10.11830/ISSN.1000-5013.201604015
文献标志码:
A
摘要:
对9种代表性Cry1A型杀虫晶体蛋白成员进行活性区空间结构的同源模建与比较分析.分析结果表明:Domain Ⅰ和Domain Ⅲ相对保守,其中,Domain Ⅰ整体走向及结构基本重叠,只有Cry1Aa和Cry1Af多了一个螺旋;Domain Ⅱ的主要差异体现在loop上;将Domain Ⅲ结构一致的成员Cry1Ab,Cry1Ad,Cry1Ae和Cry1Af归为一个亚型,其他5种成员归为另一个亚型.研究确定了影响Cry1A型杀虫晶体蛋白结构差异的关键氨基酸及关键结构片段.
Abstract:
The 3-D structure of the toxic core for all available 9 typical Cry1A proteins were constructed by the method of homology modeling. The structural differences among different Cry1A proteins indicated that Domain Ⅰ and Domain Ⅲ were more conservative than Domain Ⅱ. Structures of Cry1A Domain Ⅰ were almost identical except Cry1Aa and Cry1Af which had one more helix. The differences among the Cry1A Domain II were mainly located in loops. Structures of Domain Ⅲ of Cry1Ab, Cry1Ad, Cry1Ae and Cry1Af were consistent, thus these four Cry1A proteins and the other five were divided into two different subgroups. The results confirm that the key residues and motifs are important for the insecticidal activites of Cry1A proteins.

参考文献/References:

[1] DE MAAGD R A,BRAVO A,BERRY C,et al.Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria[J].Annual Review of Genetics,2003,37(1):409-433.
[2] SCHNEPF E,CRICKMORE N,VAN RIE J,et al.Bacillus thuringiensis and its pesticidal crystal proteins[J].Microbiology and Molecular Biology Reviews,1998,62(3):775-806.
[3] SHIMIZU T,MORIKAWA K.The beta-prism: A new folding motif[J].Trends in Biochemical Sciences,1996,21(1):3-6.
[4] GRPCHULSKI P,MASSON L,BORISOVA S,et al.Bacillus thuringiensis CryIA(a)insecticidal toxin: Crystal structure and channel formation[J].Journal of Molecular Biology,1995,254(3):447-464.
[5] DERBYSHIRE D J,ELLAR D J,LI J.Crystallization of the Bacillus thuringiensis toxin Cry1Ac and its complex with the receptor ligand N-acetyl-D-galactosamine[J].Acta crystallographica,2001,57(12):1938-1944.
[6] PARDO-LóPEZ L,SOBERóN M,BRAVO A.Bacillus thuringiensis insecticidal three-domain Cry toxins: Mode of action, insect resistance and consequences for crop protection[J].Fems Microbiology Reviews,2013,37(1):3-22.
[7] VACHON V,LAPRADE R,SCHWARTZ J L.Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review[J].Journal of Invertebrate Pathology,2012,111(1):1-12.
[8] ARENAS I,BRAVO A,SOBERóN M,et al.Role of alkaline phosphatase from Manduca sexta in the mechanism of action of Bacillus thuringiensis Cry1Ab toxin[J].Journal of Biological Chemistry,2010,285(17):12497-12503.
[9] KNIGHT P J,CRICKMORE N,ELLAR D J.The receptor for Bacillus thuringiensis CrylA(c)delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N[J].Molecular Microbiology,1994,11(3):429-436.
[10] PIGOTT C R,ELLAR D J.Role of receptors in Bacillus thuringiensis crystal toxin activity[J].Microbiology and Molecular Biology Reviews,2007,71(2):255-281.
[11] VADLAMUDI R K,WEBER E,JI I,et al.Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis[J].Journal of Biological Chemistry,1995,270(10):5490-5494.
[12] RIE J V.Bacillus thuringiensis and its use in transgenic insect control technologies[J].International Journal of Medical Microbiology,2000,290(4/5):463-469.
[13] LUCENA W A,PELEGRINI P B,MARTINS-DE-SA D,et al.Molecular approaches to improve the insecticidal activity of Bacillus thuringiensis Cry toxins[J].Toxins(Basel),2014,6(8):2393-2423.
[14] LI J D,CARROLL J,ELLAR D J.Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution[J].Nature,1991,353(6347):815-821.
[15] MU?óZ-GARAY C,PORTUGAL L,PARDO-LóPEZ L,et al.Characterization of the mechanism of action of the genetically modified Cry1AbMod toxin that is active against Cry1Ab-resistant insects[J].Biochimica et Biophysica Acta,2009,1788(10):2229-2237.
[16] SOBERóN M,PARDO-LóPEZ L,LóPEZ I,et al.Engineering modified Bt toxins to counter insect resistance[J].Science,2007,318(5856):1640-1642.
[17] GIRARD F,VACHON V,LEBEL G,et al.Chemical modification of Bacillus thuringiensis Cry1Aa toxin single-cysteine mutants reveals the importance of domain Ⅰ structural elements in the mechanism of pore formation[J].Biochimica et Biophysica Acta,2009,1788(2):575-580.
[18] VACHON V,PRéFONTAINE G,RANG C,et al.Helix 4 mutants of the Bacillus thuringiensis insecticidal toxin Cry1Aa display altered pore-forming abilities[J].Applied and Environmental Microbiology,2004,70(10):6123-6130.
[19] JIMéNEZ-JUáREZ N,MU?OZ-GARAY C,GóMEZ I,et al.Bacillus thuringiensis Cry1Ab mutants affecting oligomer formation are non-toxic to Manduca sexta larvae[J].Journal of Biological Chemistry,2007,282(29):21222-21229.
[20] RODRíGUEZ-ALMAZáN C,ZAVALA L E,MU?OZ-GARAY C,et al.Dominant negative mutants of Bacillus thuringiensis Cry1Ab toxin function as anti-toxins: Demonstration of the role of oligomerization in toxicity[J].PLoS One,2009,4(5):e5545.
[21] ATSUMI S,INOUE Y,ISHIZAKA T,et al.Location of the Bombyx mori 175kDa cadherin-like protein-binding site on Bacillus thuringiensis Cry1Aa toxin[J].The FEBS Journal,2008,275(19):4913-4926.
[22] RAJAMOHAN F,ALZATE O,COTRILL J A,et al.Protein engineering of Bacillus thuringiensis delta-endotoxin: Mutations at domain Ⅱ of CryIAb enhance receptor affinity and toxicity toward gypsy moth larvae[J].Proceedings of the National Academy of Sciences,1996,93(25):14338-14343.
[23] ABDULLAH M A,ALZATE O,MOHAMMAD M,et al.Introduction of Culex toxicity into Bacillus thuringiensis Cry4Ba by protein engineering[J].Applied and Environmental Microbiology,2003,69(9):5343-5453.
[24] 周子珊.CrylAh蛋白杀虫特异性分子机制的研究[D].北京:中国农业科学院,2013:37-38.
[25] SAMSOMEMEA E,VáZQUEZ C,ORTIZ A.Genetic manipulation in Bacillus thuringiensis for strain improvement[J].Biotechnology Letters,2010,32(11):1549-1557.
[26] DE MAAGD R A,WEEMEN-HENDRIKS M,STIEKEMA W,et al.Bacillus thuringiensis delta-endotoxin Cry1C domain Ⅲ can function as a specificity determinant for Spodoptera exigua in different, but not all, Cry1-Cry1C hybrids[J].Applied and Environmental Microbiology,2000,66(4):1559-1563.
[27] DE MAAGD R A,KWA M S,VANDER K H,et al.Domain Ⅲ substitution in Bacillus thuringiensis delta-endotoxin CryIA(b)results in superior toxicity for Spodoptera exigua and altered membrane protein recognition[J].Applied and Environmental Microbiology,1996,62(5):1537-1543.
[28] LEE M K,YOUNG B A,DEAN D H.Domain Ⅲ exchanges of Bacillus thuringiensis CryIA toxins affect binding to different gypsy moth midgut receptors[J].Biochemical and Biophysical Research Communications,1995,216(1):306-312.

备注/Memo

备注/Memo:
收稿日期: 2015-10-09
通信作者: 林毅(1976-),男,教授,博士,主要从事伴孢晶体蛋白的基因克隆与信息学的研究.E-mail:lyhxm@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(40601046); 教育部科学技术研究重点项目(211205); 华侨大学中青年教师科研提升资助计划(ZQN-YX205)
更新日期/Last Update: 2016-07-20