[1]黄身桂,栾晓圣,言兰,等.考虑磨削余量分配的齿轮钢磨削工艺优化[J].华侨大学学报(自然科学版),2016,37(4):401-405.[doi:10.11830/ISSN.1000-5013.201604002]
 HUANG Shengui,LUAN Xiaosheng,YAN Lan,et al.Optimization on Grinding Process of Gear Stell Considering Allowance Distribution[J].Journal of Huaqiao University(Natural Science),2016,37(4):401-405.[doi:10.11830/ISSN.1000-5013.201604002]
点击复制

考虑磨削余量分配的齿轮钢磨削工艺优化()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第37卷
期数:
2016年第4期
页码:
401-405
栏目:
出版日期:
2016-07-04

文章信息/Info

Title:
Optimization on Grinding Process of Gear Stell Considering Allowance Distribution
文章编号:
1000-5013(2016)04-0401-05
作者:
黄身桂12 栾晓圣2 言兰1 陈首虹1 姜峰2
1. 华侨大学 机电及自动化学院, 福建 厦门 361021;2. 华侨大学 制造工程研究院, 福建 厦门 361021
Author(s):
HUANG Shengui12 LUAN Xiaosheng2 YAN Lan1 CHEN Shouhong1 JIANG Feng2
1. College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China; 2.Institute of Manufacturing Engineering, Huaqiao University, Xiamen 361021, China
关键词:
磨削工艺 余量分配 加工效率 40CrNiMo钢 表面质量
Keywords:
grinding process allowance distribution grinding efficiency 40CrNiMo steel surface quality
分类号:
TG5
DOI:
10.11830/ISSN.1000-5013.201604002
文献标志码:
A
摘要:
以40CrNiMo钢为研究对象,对原有磨削工艺进行优化,探讨减少工作台进给次数、去掉半精磨工艺对磨削质量的影响.结果表明:原有粗磨+半精磨+精磨工艺改为粗磨+精磨两道工艺是可行的,且在保持总磨削余量一定的条件下,通过减少工作台进给次数的方法可以降低粗磨过程多次走刀造成的磨削表面硬化,同时提高了加工效率;粗磨产生的磨削表面硬化对降低半精磨、精磨后的磨削表面粗糙度有利,但表面硬化伴随着磨削亚表层金相组织变化和残余应力等不利因素.
Abstract:
The effects of reducing frequency of strokes and eliminating semi-fine grinding process on the grinding quality of 40CrNiMo gear steel were investigated. It was found removal of the semi-fine grinding process from existing coarse/semi-fine/fine processing sequence is feasible and at a constant total grinding allowance,a decrease of strokes number can successfully reduce surface hardening and subsequently improve the machining efficiency. It was also evidenced that the surface hardening left by coarse grinding can reduce the surface roughness of semi-fine and fine grinding however the undesirable sub-surface damage and residual stress would associate. These findings are of practical significance for optimization of grinding process.

参考文献/References:

[1] BESWICK J M.Bearing steel technology[M].West Conshohocken:ASTM,2002:533.
[2] BHADURI D,KUMAR R,CHATTOPASHYAY A K.On the grindability of low-carbon steel under dry, cryogenic and neat oil environments with monolayer brazed cBN and alumina wheels[J].The International Journal of Advanced Manufacturing Technology,2011(57):927-943.
[3] LI Xinmin,OLOFSSON U.FZG gear efficiency and pin-on-disc frictional study of sintered and wrought steel gear materials[J].Tribology Letters,2015,60(9):1-10.
[4] JANAKIRAMAN V,SARAVANAN R.Concurrent optimization of machining process parameters and tolerance allocation[J].The International Journal of Advanced Manufacturing Technology,2010,51(1/2/3/4):357-369.
[5] ZHANG Xueping,LIU C R,YAO Zhenqiang.Experimental study and evaluation methodology on hard surface integrity[J].The International Journal of Advanced Manufacturing Technology,2007,34(1/2):141-148.
[6] XU Xipeng,YU Yiqing,XU Hongjun.Effect of grinding temperatures on the surface integrity of a nickel-based superalloy[J].Journal of Materials Processing Technology,2002,129(1/2/3):359-363.
[7] 罗庆洪,李春志,娄艳芝,等.磨削工艺对渗碳M50NiL钢表面变质层微观结构和性能及疲劳性能影响[J].金属学报,2012(2):194-198.
[8] 张雪萍,王和平,卢光辉,等.轴承钢顺次磨削表面残余应力离散度试验研究[J].机械工程学报,2010,46(15):89-94.
[9] 杨洪春.33CrNi2MoV钢的磨削加工[J].现代制造技术与装备,2014(5):48-49.
[10] 时海芳,刘波,李海玉,等.磨削深度对42CrMo钢磨削强化层的影响[J].金属热处理,2012,37(1):96-98.
[11] 刘菊东,王贵成,陈康敏.磨削深度对65Mn钢磨削硬化层的影响[J].农业机械学报,2005,36(8):135-138.
[12] ELI S N,ASILTüRK L,ELIK L.Determining the optimum process parameter for grinding operations using robust process[J].Journal of Mechanical Science and amp; Technology,2012,26(11):3587-3595.
[13] GUO Yansong,DUFLOU J R,LAUWERS B.Energy-based optimization of the material stock allowance for turning-grinding process sequence[J].International Journal of Advanced Manufacturin,2014,75(1/2/3/4):503-513.
[14] YEO S H,NGOI B K A,CHEN H.Process sequence optimization based on a new cost-tolerance model[J].Journal of Intelligent Manufacturing,1997,9(1):29-37.
[15] 陈凯.CSS-42L合金钢的磨削加工性研究[D].南京:南京航空航天大学,2013:47-48.
[16] 彭宁,李春艳,郭璐.数控成形磨齿机测头自动对刀技术和余量分配的研究[J].机械工程师,2015(1):200-201.
[17] 沈南燕.大型数控切点跟踪曲轴磨床智能加工工艺及策略研究[D].上海:上海大学,2011:31-53.
[18] 万林林.氮化硅陶瓷回转曲面典型零件高效精密磨削工艺实验与理论研究[D].长沙:湖南大学,2012:100-113.
[19] 杨立志,刘洋,陆永超,等.提升起重机变幅油缸活塞杆磨削质量与效率的新工艺方法的探索与研究[J].液压气动与密封,2014(11):71-72.
[20] 任敬心,康仁科,王西彬.难加工材料磨削技术[M].北京:电子工业出版社,2011:196-232.

备注/Memo

备注/Memo:
收稿日期: 2016-05-20
通信作者: 姜峰(1981-),男,副教授,博士,主要从事高效精密加工和先进制造技术的研究.E-mail:jiangfeng@hqu.edu.cn.
基金项目: 国家自然科学青年基金资助项目(51405168); 福建省自然科学基金面上资助项目(2016J01237); 华侨大学高层次人才科研启动项目(13Y0385, 13Y0386)
更新日期/Last Update: 2016-07-20