[1]张秀秀,陈东华.非理想信道下的分布式认知多小区波束形成[J].华侨大学学报(自然科学版),2016,37(2):185-189.[doi:10.11830/ISSN.1000-5013.2016.02.0185]
 ZHANG Xiuxiu,CHEN Donghua.Beam Forming of the Distributed Cognitive Multi-CellSystem for Imperfect Channel[J].Journal of Huaqiao University(Natural Science),2016,37(2):185-189.[doi:10.11830/ISSN.1000-5013.2016.02.0185]
点击复制

非理想信道下的分布式认知多小区波束形成()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第37卷
期数:
2016年第2期
页码:
185-189
栏目:
出版日期:
2016-03-20

文章信息/Info

Title:
Beam Forming of the Distributed Cognitive Multi-CellSystem for Imperfect Channel
文章编号:
1000-5013(2016)02-0185-05
作者:
张秀秀 陈东华
华侨大学 信息科学与工程学院, 福建 厦门 361021
Author(s):
ZHANG Xiuxiu CHEN Donghua
College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
关键词:
认知多小区 分布式 稳健波束 凸优化
Keywords:
cognitive multi-cell distributed robust beam forming convex optimization
分类号:
TN929.5
DOI:
10.11830/ISSN.1000-5013.2016.02.0185
文献标志码:
A
摘要:
针对非理想信道下的波束形成问题,将传统稳健波束形成设计推广至认知多小区,在认知干扰和认知用户速率约束下,构造基于最小化认知系统总功率准则的优化问题.通过半定松弛及S-Procedure算法将其转化为凸优化问题,并采用Primal分解将该凸优化问题分解为一组独立的子问题,从而实现了分布式求解,在降低复杂度的同时减少所需的反馈信息.仿真结果表明:算法不仅对信道误差稳健,而且收敛速度很快.
Abstract:
To solve the beam forming problem for imperfect channel, the robust beam forming design method for conventional system is extended to cognitive multi-cell system. Under the constraints of cognitive interference and cognitive users’ rate, the optimization problem is formulated based on the criterion of minimization of cognitive system’s total power. The problem is converted to a convex optimization problem by means of semi-definite relaxation and S-Procedure algorithm, and is decomposed into a group of independent sub-problems by using Primal decomposition. So then a distributed solution is achieved and both computational complexity and required feedback information are reduced. Simulation results show that the algorithm is not only robust to channel errors but also convergences quickly.

参考文献/References:

[1] HAYKIN S.Cognitive radio: Brain-empowered wireless communications[J].Journal on Selected Areas in Communications,2005,23(2):201-220.
[2] GHARAVOL E A,LIANG Y C,MOUTHAAN K.Robust downlink beamforming in multiuser MISO cognitive radio networks with imperfect channel-state informing[J].Transactions on VEHICULAR,2010,59(6):2852-2860.
[3] DU Huiqin,RATNARAJAH T,PESAVENTO M,et al.Joint transceiver beamforming in MIMO cognitive radio network via secondorder cone programming[J].Transactions on Signal Processing,2012,60(2):781-792.
[4] WIJEWARDHANA U L,CODREANU M,LATVA-AHO M.Robust beamformer design for underlay cognitive radio network using worst case optimization[C]//On International Symposium and Workshops on Modeling and Optimization in Mobile, Ad-Hoc and Wireless Networks.Tsukuba Science:IEEE Press,2013:404-411.
[5] PONUKUMATI D,GAO Fei-fei,BODE M,et al.Robust coordinated downlink beamforming for multicell-cognitive radio networks[C]//IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications(PIMRC).London:International Conference on Communications,2013:719-723.
[6] KIM Y J,SONG M G,CHO Y S,et al.Decentralized beamformer design with limited multi-cell cooperation for interference channel of cognitive radio networks[J].Transactions on Wireless Communicaions,2013,12(8):4142-4152.
[7] PENNANEN H,TOLLI A,LATVA-AHO M.Decentralized robust beamforming for coordin-ated multi-cell MISO networks[J].Signal Processing Letters,2014,21(3):334-338.
[8] BOYD S,VANDENBERGHE L.Convex optimization[M].Cambridge:Cambridge University Press,2004:655-656.
[9] GRANT M,BOYD S.CVX:Matlab software for disciplined convex programming,version 1.21[EB/OL][2011-01-04] .http://cvxr.com/cvx.
[10] PALOMAR D P,CHIANG M.A tutorial on decomposition methods for network utility maximization[J].IEEE Journal on Selecten Areas in Communications,2006,24(8):1439-1451.

备注/Memo

备注/Memo:
收稿日期: 2014-09-09
通信作者: 陈东华(1977-),男,副教授,博士,主要从事宽带无线通信及无线网络资源管理方面的研究.E-mail:dhchen@hqu.edu.cn.
基金项目: 福建省自然科学基金资助项目(2012J05119)
更新日期/Last Update: 2016-03-20