[1]邹心遥,陈敬伟,姚若河.采用粒子群优化的SVM算法在数据分类中的应用[J].华侨大学学报(自然科学版),2016,37(2):171-174.[doi:10.11830/ISSN.1000-5013.2016.02.0171]
 ZOU Xinyao,CHEN Jingwei,YAO Ruohe.Application of SVM Algorithm Based on Particle Swarm Optimization in Data Classification[J].Journal of Huaqiao University(Natural Science),2016,37(2):171-174.[doi:10.11830/ISSN.1000-5013.2016.02.0171]
点击复制

采用粒子群优化的SVM算法在数据分类中的应用()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第37卷
期数:
2016年第2期
页码:
171-174
栏目:
出版日期:
2016-03-20

文章信息/Info

Title:
Application of SVM Algorithm Based on Particle Swarm Optimization in Data Classification
文章编号:
1000-5013(2016)02-0171-04
作者:
邹心遥1 陈敬伟1 姚若河2
1. 广东农工商职业技术学院 机电系, 广东 广州 510507;2. 华南理工大学 电子与信息学院, 广东 广州 510641
Author(s):
ZOU Xinyao1 CHEN Jingwei1 YAO Ruohe2
1. Department of Mechanical and Electronic, Guangdong AIB Polytechnic College, Guangzhou 510507, China; 2. School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China
关键词:
数据分类 支持向量机 粒子群优化 Iris数据集 惩罚参数 高斯参数
Keywords:
data classification support vector machine particle swarm optimization Iris data set penalty parameter Gauss parameter
分类号:
TP181
DOI:
10.11830/ISSN.1000-5013.2016.02.0171
文献标志码:
A
摘要:
针对分类数据集合线性不可分的问题,改进了支持向量机(SVM)的分类方法,构建新的分类决策函数和高斯核函数.在支持向量机关键参数的优化环节,采用粒子群算法对惩罚参数和高斯参数进行优化,设计便于操作的优化流程,并针对Iris数据集合展开实验研究.结果表明:相比于基于遗传算法优化的SVM方法,所提出的方法执行速度快、分类准确率高.
Abstract:
According to the problem that the classification data set can not be divided, the classification method of support vector machine(SVM)is improved, and the new classification decision function and Gauss kernel function are constructed. Using particle swarm algorithm to optimize the penalty parameters and Gauss parameters, the optimization process is easy to operate. To experimental study the Iris data set, the results show that compared with the SVM method based on genetic algorithm, the proposed method performs fast and has high classification accuracy.

参考文献/References:

[1] PALACIOS A,MARTINEZ A,SANCHEZ L.Sequential pattern mining applied to aeroengine condition monitoring with uncertain health data[J].Engineering Applications of Artifical Intelligence,2015(44):10-24.
[2] 范士俊,张爱武,胡少兴,等.基于随机森林的机载激光全波形点云数据分类方法[J].中国激光,2013,40(9):1-7.
[3] 刘红岩,陈剑,陈国青.数据挖掘中的数据分类算法综述[J].清华大学学报(自然科学版),2002,42(6):727-730.
[4] 杨帆,林琛,周奇凤,等.基于随机森林的潜在k邻近算法及其在基因表达数据分类中的应用[J].系统工程理论与实践,2012,32(4):815-825.
[5] TABKHI S,NAJAFI A,RANJBAR R.Gene selection for microarray data classification using a novel ant colony optimization[J].Neurocomputing,2015,168:1024-1036.
[6] AGARWAL S K,SHAH S,KUMAR R.Classification of mental tasks from EEG data using backtracking search optimization based neural classifier[J].Neurocomputing,2015,166:397-403.
[7] DURDURAN S S.Automatic classification of high resolution land cover using a new data weighting procedure: The combination of K-means clustering algorithm and central tendency measures(KMC-CTM)[J].Applied Soft Computing,2015,35:136-150.
[8] 李婷,詹庆明,喻亮.基于地物特征提取的车载激光点云数据分类方法[J].国土资源遥感,2012,92(1):17-21.
[9] 陆慧娟,安春霖,马小平,等.基于输出不一致测度的极限学习机集成的基因表达数据分类[J].计算机学报,2013,36(2):341-348.
[10] ELYASIGOMARI V,MIRJAFARI M S,SCREEN H R C.Cancer classification using a novel gene selection approach by means of shuffling based on data clustering with optimization[J].Applied Soft Computing,2015,35:43-51.
[11] 喻小光,陈维斌,陈荣鑫.一种数据规约的近似挖掘方法的实现[J].华侨大学学报(自然科学版),2008,29(3):370-374.
[12] 王江海,武林仙,吴扬扬.基于刻画得数据空间数据源管理子系统[J].华侨大学学报(自然科学版),2012,33(5):509-513.
[13] 彭京,唐常杰,元昌安,等.一种基于概念相似度的数据分类方法[J].软件学报,2007,18(2):311-322.
[14] 杨帆,林琛,周绮凤.基于随机森林的潜在k近邻算法及其在基因表达数据分类中的应用[J].系统工程理论与实践,2012,32(4):815-826.
[15] 陆慧娟,安春霖,马小平,等.基于输出不一致测度的极限学习机集成的基因表达数据分类[J].计算机学报,2013,36(2):341-348.

相似文献/References:

[1]黄建新.室外场景下目标分割和目标识别算法[J].华侨大学学报(自然科学版),2005,26(4):353.[doi:10.3969/j.issn.1000-5013.2005.04.006]
 Huang Jianxin.An Algorithm for Object Segmentation and Object Recognition on Outdoor Scene[J].Journal of Huaqiao University(Natural Science),2005,26(2):353.[doi:10.3969/j.issn.1000-5013.2005.04.006]
[2]林毅,蔡福营,袁宇熹,等.PCA-SVM模型在几丁质酶最适温度建模中的应用[J].华侨大学学报(自然科学版),2008,29(2):236.[doi:10.11830/ISSN.1000-5013.2008.02.0236]
 LIN Yi,CAI Fu-ying,YUAN Yu-xi,et al.A Uniform Design Based PCA-SVM Model for Predicting Optimum Temperature in Chitinase[J].Journal of Huaqiao University(Natural Science),2008,29(2):236.[doi:10.11830/ISSN.1000-5013.2008.02.0236]
[3]王洪如,刘强.利用支持向量机的摩擦模型参数辨识[J].华侨大学学报(自然科学版),2010,31(2):132.[doi:10.11830/ISSN.1000-5013.2010.02.0132]
 WANG Hong-ru,LIU Qiang.Research on the Parameter Identification of Friction Model Based on Support Vector Machine[J].Journal of Huaqiao University(Natural Science),2010,31(2):132.[doi:10.11830/ISSN.1000-5013.2010.02.0132]
[4]曾小军,黄宜坚.利用AR模型和支持向量机的调速阀故障识别[J].华侨大学学报(自然科学版),2011,32(1):13.[doi:10.11830/ISSN.1000-5013.2011.01.0013]
 ZENG Xiao-jun,HUANG Yi-jian.Fault Recognition of Speed Control Valve Based on AR Model and Support Vector Machine[J].Journal of Huaqiao University(Natural Science),2011,32(2):13.[doi:10.11830/ISSN.1000-5013.2011.01.0013]
[5]林晓丹.一种基于支持向量机的数字音频认证方法[J].华侨大学学报(自然科学版),2011,32(2):153.[doi:10.11830/ISSN.1000-5013.2011.02.0153]
 LIN Xiao-dan.An SVM-Based Digital Audio Authentication Method[J].Journal of Huaqiao University(Natural Science),2011,32(2):153.[doi:10.11830/ISSN.1000-5013.2011.02.0153]
[6]黄凯宗,张光亚.使用伪氨基酸组成和BP神经网络预测类弹性蛋白多肽的相变温度[J].华侨大学学报(自然科学版),2011,32(2):194.[doi:10.11830/ISSN.1000-5013.2011.02.0194]
 HUANG Kai-zong,ZHANG Guang-ya.Using Pseudo-Amino Acid Composition and BP Neural Network to Predict the Transition Temperature of Elastin-Like Peptides[J].Journal of Huaqiao University(Natural Science),2011,32(2):194.[doi:10.11830/ISSN.1000-5013.2011.02.0194]
[7]葛慧华,黄可君,张光亚.不同嗜盐机制微生物蛋白质组特性及其识别[J].华侨大学学报(自然科学版),2014,35(2):169.[doi:10.11830/ISSN.1000-5013.2014.02.0169]
 GE Hui-hua,HUANG Ke-jun,ZHANG Guang-ya.Amino Acid Signatures of Different Hypersanline Adaptation Proteomes and Their Classification[J].Journal of Huaqiao University(Natural Science),2014,35(2):169.[doi:10.11830/ISSN.1000-5013.2014.02.0169]
[8]林源清,张光亚.G/11木聚糖酶最适pH值的预测及其与氨基酸位置的关系[J].华侨大学学报(自然科学版),2014,35(3):316.[doi:10.11830/ISSN.1000-5013.2014.03.0316]
 LIN Yuan-qing,ZHANG Guang-ya.Prediction of Optimum pH of G/11 Xylanases and the Relationship between the Location of Amino Acid and Optimum pH Value[J].Journal of Huaqiao University(Natural Science),2014,35(2):316.[doi:10.11830/ISSN.1000-5013.2014.03.0316]
[9]杨屹洲,方瑞明,黄文权,等.应用小波变换和支持向量机的商业电力负荷预测[J].华侨大学学报(自然科学版),2015,36(2):142.[doi:10.11830/ISSN.1000-5013.2015.02.0142]
 YANG Yi-zhou,FANG Rui-ming,HUANG Wen-quan,et al.Commercial Power Load Forecasting Using Wavelet Transform and SVM[J].Journal of Huaqiao University(Natural Science),2015,36(2):142.[doi:10.11830/ISSN.1000-5013.2015.02.0142]
[10]蔡琼,陈鹏慧,魏武.采用小波变换的脑电图信号分析及其应用[J].华侨大学学报(自然科学版),2015,36(2):166.[doi:10.11830/ISSN.1000-5013.2015.02.0166]
 CAI Qiong,CHEN Peng-hui,WEI Wu.Analysis and Application of Electroencephalography Signal Based on Wavelet Transform[J].Journal of Huaqiao University(Natural Science),2015,36(2):166.[doi:10.11830/ISSN.1000-5013.2015.02.0166]

备注/Memo

备注/Memo:
收稿日期: 2015-12-22
通信作者: 邹心遥(1978-),女,副教授,博士,主要从事新型光电器件、物联网技术的研究.E-mail:madelinexy@163.com.
基金项目: 国家自然科学基金资助项目(61274085); 广东省大学生科技创新培育专项(PDJH2015A0718)
更新日期/Last Update: 2016-03-20