[1]谢超,谢明红.应用局部自适应阈值方法检测圆形标志点[J].华侨大学学报(自然科学版),2016,37(2):134-138.[doi:10.11830/ISSN.1000-5013.2016.02.0134]
 XIE Chao,XIE Minghong.Circular Mark Point Detecting Research Based on Local Adaptive Threshold[J].Journal of Huaqiao University(Natural Science),2016,37(2):134-138.[doi:10.11830/ISSN.1000-5013.2016.02.0134]
点击复制

应用局部自适应阈值方法检测圆形标志点()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第37卷
期数:
2016年第2期
页码:
134-138
栏目:
出版日期:
2016-03-20

文章信息/Info

Title:
Circular Mark Point Detecting Research Based on Local Adaptive Threshold
文章编号:
1000-5013(2016)02-0134-05
作者:
谢超 谢明红
华侨大学 机电及自动化学院, 福建 厦门 361021
Author(s):
XIE Chao XIE Minghong
College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China
关键词:
图像分割 机器视觉 自适应阈值 圆形标志点 椭圆拟合
Keywords:
image segmentation machine vision adaptive threshold cular mark point ellipse fitting
分类号:
TP317.4
DOI:
10.11830/ISSN.1000-5013.2016.02.0134
文献标志码:
A
摘要:
利用圆形标志点的几何和灰度特征,在图像中搜索具有符合该特征描述的区域,对圆形标志点进行粗定位.对粗定位区域的扩展区域使用最大类间方差阈值分割法分割出圆形标志点轮廓,并对像素轮廓进行最小二乘拟合,计算出圆形标志点的中心坐标及拟合轮廓各参数,根据该参数筛选保留所需标志点中心坐标.结果表明:该方法使用局部的大津阈值检测圆形标志点,能够避免全局阈值的缺陷,提高标志点检测的检出率;采用最小二乘椭圆拟合提取标志点中心,能够达到亚像素级精度.
Abstract:
Using the geometric and gray features of the circular mark points, search an area in the image with the feature description and do coarse position of them. The extension area of coarse position area is divided into the contour of the circular mark points using Otsu threshold segmentation method, and the the contour pixels are fitted with the least squares method to calculate the center coordinates of the circular mark points as well as the parameters of the fitting contour. According to the parameters to select the center coordinates which is needed. The results show that this method takes advantage of local Otsu threshold to detect circular mark points and avoids the defect of global threshold, improves the detection efficiency of circular mark points. Using the least squares ellipse fitting to extract mark points center can achieve sub-pixel precision.

参考文献/References:

[1] 吴凡路,刘建军,任鑫,等.基于圆形标志点的深空探测全景相机标定方法[J].光学学报,2013,33(11):139-145.
[2] LIU Jianwei,LIANG Jin,XIAO Zhenzhong,et al.Development of a large-scale 3D digitizing system for cultural heritage documentation[C]//IEEE Proceedings of the International Conference on Mechatronics and Automation.New Jersey:IEEE Press,2010:1587-1592.
[3] 欧阳祥波,宗志坚,熊会元.基于标志点的测量数据自动拼接方法[J].中国图象图形学报,2008,13(2):298-301.
[4] 梁云波,邓文怡,娄小平,等.基于标志点多视三维数据自动拼接方法[J].北京信息科技大学学报(自然科学版),2010,25(1):30-33.
[5] 王赫.视觉测量点云数据拼接方法及关键技术研究[D].哈尔滨:哈尔滨理工大学,2011:3.
[6] OTSU N.A threshold selection method from gray-level histogram[J].IEEE Trans,1979,9(1):62-66.
[7] 甘玲,林小晶.基于连通域提取的车牌字符分割算法[J].计算机仿真,2011,28(4):336-339.
[8] 陈柏生.一种二值图像连通区域标记的新方法[J].计算机工程与应用,2006,42(25):46-47.
[9] 刘贤喜,李邦明,苏庆堂,等.一种新的二值图像连通区域准确标记算法[J].计算机工程与应用,2007,43(22):76-78.
[10] 闫蓓,王斌,李媛.基于最小二乘法的椭圆拟合改进算法[J].北京航空航天大学学报(自然科学版),2008,34(3):295-298.
[11] 安新源,周宗潭,胡德文.椭圆拟合的非线性最小二乘方法[J].计算机工程与应用,2009,45(18):188-190.

相似文献/References:

[1]凌朝东,陈虎,杨骁,等.结合SLIC超像素和DBSCAN聚类的眼底图像硬性渗出检测方法[J].华侨大学学报(自然科学版),2015,36(4):399.[doi:10.11830/ISSN.1000-5013.2015.04.0399]
 LING Chao-dong,CHEN Hu,YANG Xiao,et al.Fundus Image Hard Exudates Detection Based on SLIC Superpixels and DBSCAN Clustering[J].Journal of Huaqiao University(Natural Science),2015,36(2):399.[doi:10.11830/ISSN.1000-5013.2015.04.0399]
[2]钱卫星,黄丽亚.二维Otsu自适应阈值快速算法的改进[J].华侨大学学报(自然科学版),2015,36(4):427.[doi:10.11830/ISSN.1000-5013.2015.04.0427]
 QIAN Wei-xing,HUANG Li-ya.Improvement for 2D Otsu Adaptive Threshold Fast Algorithm[J].Journal of Huaqiao University(Natural Science),2015,36(2):427.[doi:10.11830/ISSN.1000-5013.2015.04.0427]
[3]钱卫星,黄丽亚.采用二维Otsu直方图斜分快速算法实现方式的改进[J].华侨大学学报(自然科学版),2016,37(1):88.[doi:10.11830/ISSN.1000-5013.2016.01.0088]
 QIAN Weixing,HUANG Liya.Improved Implementations for 2D Otsu Histogram Fast Algorithm[J].Journal of Huaqiao University(Natural Science),2016,37(2):88.[doi:10.11830/ISSN.1000-5013.2016.01.0088]
[4]郑晓玲,刘斌.采用机器视觉的铝压铸件表面缺陷检测[J].华侨大学学报(自然科学版),2016,37(2):139.[doi:10.11830/ISSN.1000-5013.2016.02.0139]
 ZHENG Xiaoling,LIU Bin.Surface Defect Detection of Aluminum Die Casting Using Machine Vision[J].Journal of Huaqiao University(Natural Science),2016,37(2):139.[doi:10.11830/ISSN.1000-5013.2016.02.0139]
[5]严小红.计算机视觉在条形码缺陷检测中的应用[J].华侨大学学报(自然科学版),2017,38(1):109.[doi:10.11830/ISSN.1000-5013.201701021]
 YAN Xiaohong.Application of Computer Vision in Defect Bar Code Detection[J].Journal of Huaqiao University(Natural Science),2017,38(2):109.[doi:10.11830/ISSN.1000-5013.201701021]
[6]杨栖凤,崔长彩,黄国钦.金刚石砂轮表面二维形貌全场测量和分析[J].华侨大学学报(自然科学版),2018,39(4):479.[doi:10.11830/ISSN.1000-5013.201711013]
 YANG Qifeng,CUI Changcai,HUANG Guoqin.Measurement and Analysis of Two-Dimensional Surface Topography of Whole Grinding Wheel[J].Journal of Huaqiao University(Natural Science),2018,39(2):479.[doi:10.11830/ISSN.1000-5013.201711013]
[7]林文华,房怀英,范璐璐,等.采用双相机多尺度方法的机制砂级配测量及空隙率预测[J].华侨大学学报(自然科学版),2022,43(3):285.[doi:10.11830/ISSN.1000-5013.202112021]
 LIN Wenhua,FANG Huaiying,FAN Lulu,et al.Gradation Measurement and Void Content Prediction of Manufactured Sand Using Dual Camera Multi-Scale Method[J].Journal of Huaqiao University(Natural Science),2022,43(2):285.[doi:10.11830/ISSN.1000-5013.202112021]

备注/Memo

备注/Memo:
收稿日期: 2014-12-24
通信作者: 谢明红(1968-),男,研究员,博士,主要从事数控技术的研究.E-mail:xmh@hqu.edu.cn.
基金项目: 福建省科技重大专项(2013HZ0001-2)
更新日期/Last Update: 2016-03-20