[1]陈萍芸,林春深.一种改进的动脉CT图像去噪方法[J].华侨大学学报(自然科学版),2015,36(4):443-448.[doi:10.11830/ISSN.1000-5013.2015.04.0443]
 CHEN Ping-yun,LIN Chun-shen.Research on an Improved De-Noising Method for Artery CT Images[J].Journal of Huaqiao University(Natural Science),2015,36(4):443-448.[doi:10.11830/ISSN.1000-5013.2015.04.0443]
点击复制

一种改进的动脉CT图像去噪方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第36卷
期数:
2015年第4期
页码:
443-448
栏目:
出版日期:
2015-07-15

文章信息/Info

Title:
Research on an Improved De-Noising Method for Artery CT Images
文章编号:
1000-5013(2015)04-0443-06
作者:
陈萍芸 林春深
福州大学 石油化工学院, 福建 福州 350000
Author(s):
CHEN Ping-yun LIN Chun-shen
School of Chemical Enginering, Fuzhou University, Fuzhou 350000, China
关键词:
计算机断层扫描图像 图像去噪 动脉 小波变换 阈值 中值滤波
Keywords:
computed tomography images de-noising artery wavelet transform threshold median filtering
分类号:
TP391.4
DOI:
10.11830/ISSN.1000-5013.2015.04.0443
文献标志码:
A
摘要:
针对常用医学图像去噪方法中存在去除噪声不全面、图像清晰度损失的缺点,提出一种改进型的方法.根据Brige-Massart惩罚策略,由图像自身噪声确定每层阈值,根据控制变量法确定其他的相关因素.结合图像去噪目的与去噪效果,根据计算机断层扫描(CT)图像动脉区域的灰度值特点,对阈值进行硬阈值化处理.最后,对图像进行仿真对比实验,实验结果显示:中值小波去噪的峰值信噪比(RPSN),标准信噪比(RSN)与均方差(EMS)数值都优于其他去噪方法.
Abstract:
Because of other common medical image de-noising methods are not comprehensive in the process of image de-noising. It damages the image’s definition, so this paper came up with a modified median wavelet de-noising method to de-noise. Used the Brige-Massart penalty policy and combined with the image itself noise to determine each layer threshold. Other variables are introduced by the control variable method in the process of de-noising. Combined with the Purpose and effect of image de-noising, the threshold did hard threshold processing based on computed tomography(CT)image grey value characteristics of artery territory. Lastly, through experiments, it is concluded that the RPSN, RSN and EMS of the improved de-noising method are superior to other methods.

参考文献/References:

[1] PHYLLIS A,GORDON P A,BOULOS T.Treatment of abdominal aortic aneurysms: The role of endovascular repair[J].AORN Journal,2014,100(3):241-259.
[2] 张利红,梁英波,支联合,等.基于多结构多尺度形态学梯度的医学图像边缘检测[J].激光杂志,2012(3):31-32.
[3] SHREYAMSHA K.Image denoising based on non-local means filter and its method noise thresholding[J].Signal, Image and Video Processing,2013,7(6):1211-1227.
[4] CADENAS J,MEGSON G M,SHERRATT R S,et al.Fast median calculation method[J].Electronics Letters,2012,48(10):558-560.
[5] CUI Hui-min,ZHAO Rui-mei,HOU Yan-li.Improved threshold denoising method based on wavelet transform[J].Physics Procedia,2012,33:1354-1359.
[6] 高丽娜,陈文革.CT技术的应用发展及前景[J].CT理论与应用研究,2009,18(1):99-109.
[7] 朱浩栋,陈瑛,张鲁.医学CT显示图像灰度归一化研究[J].国际生物医学工程杂志,2006,29(3):148-151.
[8] 陈志安,潘勇,岳勇,等.CT图像噪声相关因素的分析[J].中国医学影像技术,2001,17(12):1236-1238.
[9] 熊江.基于小波变换的图像去噪[J].计算机科学,2007,34(7):232-234.
[10] CADENAS J,MEGSON G M,SHERRATT R S,et al.Fast median calculation method[J].Electronics Letters,2012,48(10):558-560.
[11] 李智,张根耀,王蓓,等.基于中值滤波和小波变换的图像去噪[J].现代电子技术,2014,37(13):72-74.
[12] 朱希安,曹林.小波分析及其在数字图像处理中的应用[M].北京:电子工业出版社,2012:42-45.
[13] 聂真真.基于小波阈值去噪算法的研究[J].科教导刊,2011,18:122-123.
[14] 李月琴,栗苹,闫晓鹏,等.无线电引信信号去噪的最优小波基选择[J].北京理工大学学报:自然科学版,2008,28(8):723-726.
[15] 周玉林,毛家发,熊鹏荣.基于SNR和PSNR特征的净图定量描述方法的研究[J].上饶师范学院学报,2009,29(3):81-85.
[16] 黄兆杰,金思毅,王莉.化工过程强制去噪小波滤波最优分解层数的选取[J].青岛科技大学学报:自然科学版,2013,34(3):260-264.

相似文献/References:

[1]苏金泷,戴在平.模糊神经网络的极点配置自校正滤波器[J].华侨大学学报(自然科学版),2004,25(3):310.[doi:10.3969/j.issn.1000-5013.2004.03.021]
 Su Jinlong,Dai Zaiping.A Self-Corrected Filter Based on Fuzzy Neural Network and Pole Allocation[J].Journal of Huaqiao University(Natural Science),2004,25(4):310.[doi:10.3969/j.issn.1000-5013.2004.03.021]
[2]周凯汀,郑力新.图像域阈值与维纳滤波组合的图像去噪方法[J].华侨大学学报(自然科学版),2012,33(2):157.[doi:10.11830/ISSN.1000-5013.2012.02.0157]
 ZHOU Kai-ting,ZHENG Li-xin.Image Denoising by Thresholding and Wiener Filtering in Image Domain[J].Journal of Huaqiao University(Natural Science),2012,33(4):157.[doi:10.11830/ISSN.1000-5013.2012.02.0157]

备注/Memo

备注/Memo:
收稿日期: 2015-01-25
通信作者: 林春深(1976-),男,讲师,博士,主要从事过程装备与控制的研究.E-mail:183978819@qq.com.
基金项目: 国家质检总局科技计划资助项目(2010QK032)
更新日期/Last Update: 2015-07-20