[1]张晗,李砚超,姜玉刚,等.抗氧化剂阿魏酸自组装金纳米颗粒的体外抗氧化[J].华侨大学学报(自然科学版),2015,36(1):60-63.[doi:10.11830/ISSN.1000-5013.2015.01.0060]
 ZHANG Han,LI Yan-chao,JIANG Yu-gang,et al.In Vitro Antioxidant Activity Study of Ferulic Acid Self-Assembled Gold Nanoparticles[J].Journal of Huaqiao University(Natural Science),2015,36(1):60-63.[doi:10.11830/ISSN.1000-5013.2015.01.0060]
点击复制

抗氧化剂阿魏酸自组装金纳米颗粒的体外抗氧化()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第36卷
期数:
2015年第1期
页码:
60-63
栏目:
出版日期:
2015-01-20

文章信息/Info

Title:
In Vitro Antioxidant Activity Study of Ferulic Acid Self-Assembled Gold Nanoparticles
文章编号:
1000-5013(2015)01-0060-04
作者:
张晗1 李砚超2 姜玉刚2 杜立波2 施维1 刘扬2
1. 吉林大学 分子酶学工程教育部重点实验室, 吉林 长春 130012; 2. 中国科学院化学研究所 分子动态与稳态结构国家重点实验室, 北京 100190
Author(s):
ZHANG Han1 LI Yan-chao2 JIANG Yu-gang2 DU Li-bo2 SHI Wei1 LIU Yang2
1. Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, Jilin University, Changchun 130012, China; 2. State Key Laboratory for Structural Chemisty of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sci
关键词:
电子自旋共振 抗氧化剂 自旋捕获 纳米金 脂质过氧化
Keywords:
electron spin resonance antioxidant spin trapping gold nanoparticles lipid peroxide
分类号:
O482.53
DOI:
10.11830/ISSN.1000-5013.2015.01.0060
文献标志码:
A
摘要:
对纳米阿魏酸抗氧化剂在巨噬细胞上的抗氧化保护作用进行检测,并采用电子顺磁-自旋捕获技术和光谱法对纳米阿魏酸在细胞水平上清除自由基的能力进行检测.实验结果表明:与抗氧化剂单体相比,纳米阿魏酸抗氧化剂可以更为有效地清除由细胞外界叔丁基过氧化物(t-BuOOH)刺激所产生的活性氧自由基.同时,通过光谱法对细胞膜脂质过氧化物指标丙二醛进行检测,证明纳米抗氧化剂可以更为有效地保护经受外界刺激的巨噬细胞.通过自组装方式可将抗氧化剂纳米化有利于提高抗氧化剂的抗氧化水平.
Abstract:
The antioxidant protection effects of ferulic acid nanoantioxidant on macrophage cells were studied and the free radical-inhibiting activities of ferulic acid nanoantioxidant were determined at the cellular level using electron spin resonance-spin trapping and UV-spectrum method. The results illustrates that the nanoantioxidant could eliminate the reactive oxygen species stimulated by t-BuOOH in cells more effectively than that of antioxidants monomers. Meanwhile, the lipid peroxide detection of malondialdehyde by spectrum method also proved that the nanoantioxidant have a high antioxidant activity on t-BuOOH stimulated macrophage cells. Therefore, it could be concluded that the self-assembled nanoantioxidant have a potential for the enhancement of antioxidant activity.

参考文献/References:

[1] HALLIWELL B,GUTTERIDGE J M C.Free radicals in biology and medicine[M].New York:Oxford University Press,1999:617-783.
[2] SIES H.Antioxidants in disease mechanisms and therapy[M].San Diego:Academic Press,1997:1-691.
[3] MARGAILL I,PLOTKINE M,LEROUET D.Antioxidant strategies in the treatment of stroke[J].Free Radic Biol Med,2005,39(4):429-443.
[4] PRYOR W A.Vitamin E and heart disease: Basic science to clinical intervention trials[J].Free Radic Biol Med,2000,28(1):141-164.
[5] BURTON G W,INGOLD K U.Vitamin E: Application of the principles of physical organic chemistry to the exploration of its structure and function[J].Acc Chem Res,1986,19(7):194-201.
[6] HABTEMARIAM S.Methyl-3-O-methyl gallate and gallic acid from the leaves of peltiphyllum peltatum: Isolation and comparative antioxidant, prooxidant, and cytotoxic effects in neuronal cells[J].J Med Food,2011, 14(11): 1412-1418.
[7] MUKAI K,OKABE K,HOSOSE H.Synthesis and stopped-flow investigation of antioxidant activity of tocopherols: Finding of new tocopherol derivatives having the highest antioxidant activity among phenolic antioxidants[J].J Org Chem,1989,54(3):557-560.
[8] CERECETTO H,LOLEZ G V.Antioxidants derived from vitamin E: An overview[J].Mini-Rev Med Chem,2007,7(3):315-338.
[9] NIE Zhou,LIU Ke-jian,ZHONG Chuan-jian,et al.Enhanced radical scavenging activity by antioxidant-functionalized gold nanoparticles: A novel inspiration for development of new artificial antioxidants[J].Free Radic Biol Med,2006,43(9):1243-1254.
[10] DU Li-bo,SUO Si-qin-gao-wa,WANG Guang-qing,et al.Mechanism and cellular kinetic studies of the enhancement of antioxidant activity by using surface-functionalized gold nanoparticles[J].Chem Eur J,2013,19(4):1281-1287.
[11] BEDARD K,KRAUSE K H.The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology[J].Physiol Rev,2007,87(1):245-313.
[12] ROTA C,CHIGNELL C F,MASON R P.Evidence for free radical formation during the oxidation of 2’,7’-dichlorofluorescin to the fluorescent dye 2’,7’-dichlorofluorescein by horseradish peroxidase: Possible implications for oxidative stress measurements[J].Free Radic Biol Med,1999,27(7/8):873-881.
[13] ERATHODIYIL N,YING J Y.Functionalization of inorganic nanoparticles for bioimaging applications [J].Acc Chem Res,2011,44(S1):925-935.
[14] 刘扬,杜立波.中国自由基捕获技术发展30年[J].波谱学杂志,2010,27(1):39-50.
[15] 王广清,杜立波,刘扬,等.链接琥珀酰亚胺的线性硝酮的合成与ESR研究[J].波谱学杂志,2010,27(1):80-87.
[16] LI Hai-tao,HU Jun-gai,XIN Wen-juan,et al.Production and interaction of oxygen and nitric oxide free radicals in PMA stimulated macrophages during the respiratory burst[J].Redox Report,2000,5(6):353-358.
[17] AMATORE C,ARBAULT S,BOUTON C,et al.Real-time amperometric analysis of reactive oxygen and nitrogen species released by single immunostimulated macrophages[J].ChemBioChem,2008,9(9):1472-1480.
[18] VILLAMENA F A,XIA S J,MERLE J K,et al.Reactivity of superoxide radical anion with cyclic nitrones: Role of intramolecular H-bond and electrostatic effects[J].J Am Chem Soc,2007,129(26):8177-8191.
[19] ZHAO Kai,HUANG Zhen,LU Hong-ling,et al.Induction of inducible nitric oxide synthase increases the production of reactive oxygen species in RAW 264.7 macrophages[J].Biosci Rep,2010,30(4):233-241.
[20] MA Xiao-wei,WU Yan-yang,JIN Shu-bin,et al.Gold Nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment[J].ACS Nano,2011,5(11):8629-8639.
[21] OH E,DELEHANTY J B,SAPSFORD K E,et al.Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size[J].ACS Nano,2011,5(8):6434-6448.

备注/Memo

备注/Memo:
收稿日期: 2014-07-02
通信作者: 杜立波(1980-),男,副研究员,主要从事自由基与生命科学的研究.E-mail:dulibo@iccas.ac.cn.
基金项目: 国家自然科学基金资助项目(31300697, 91227122)
更新日期/Last Update: 2015-01-20