[1]许国安,余赞平.具有多个转向点的奇摄动二阶拟线性边值问题[J].华侨大学学报(自然科学版),2015,36(预先出版):0.
 XU Guo-an,YU Zan-ping.Singular Perturbation Second Order Quasilinear Boundary Value Problem with Multi-turning Point[J].Journal of Huaqiao University(Natural Science),2015,36(预先出版):0.
点击复制

具有多个转向点的奇摄动二阶拟线性边值问题
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第36卷
期数:
2015年预先出版
页码:
0
栏目:
出版日期:
2027-07-30

文章信息/Info

Title:
Singular Perturbation Second Order Quasilinear Boundary Value Problem with Multi-turning Point
作者:
许国安 余赞平
1. 华侨大学 数学科学学院, 福建 泉州 362021;2. 福建师范大学 数学与计算机科学学院, 福建 福州 350007
Author(s):
XU Guo-an YU Zan-ping
1. School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China; 2. School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, China
关键词:
转向点 边值问题 奇摄动 拟线性
Keywords:
turning point boundary value problem singular perturbation quasilinear
分类号:
O175.1
文献标志码:
A
摘要:
在缺乏弱稳定的条件下,考虑具有两个转向点的二阶拟线性边值问题,证明解的存在性并给出了解的一致有效估计.研究结论可推广至含有m(m>2)个转向点情形.
Abstract:
The singularly perturbation second order quasilinear boundary value problem with two turning points is studied. Under the weakness condition, the existence of solutions is proved, and the uniformly valid asymptotic estimation of solutions is obtained.The results could be extended to boundary value problem(BVP)with m(m>2)turning points.

参考文献/References:

[1] NAYFEH A H.Perturbation methods[M].New York:Wiley,1973:120-200.
[2] O'MALLEY R E.Jr.Introduction to singular perturbations[M].New York:Academic Press,1974:1-45.
[3] 余赞平.一类具有高阶转向点的二次问题的奇摄动[J].数学研究,2005,38(2):180-183.
[4] 蔡建平,林宗池,具有转向点的三阶半线性奇摄动边值问题解的存在性[J].应用数学和力学,1993,14(12):1035-1039.
[5] 吴钦宽,张祥,具有转向点的奇摄动非线性边值问题解的一致有效估计[J].应用数学,1995,8(2):231-238.
[6] 余赞平,肖蓬,一类具有转向点的边值问题的奇摄动[J].福建师范大学学报:自然科学版,2004,20(4):6-8.
[7] 章国华,侯斯 F A.非线性奇异摄动现象:理论和应用[M].福州:福建科学技术出版社,1989:6-15,28-31.
[8] 许国安,余赞平.具有转向点的奇摄动二阶拟线性边值问题[J].华侨大学学报:自然科学版,2010,31(3):346-350.

相似文献/References:

[1]曾文平.解两类特殊三对角线性方程组的修正追赶法[J].华侨大学学报(自然科学版),1984,5(2):20.[doi:10.11830/ISSN.1000-5013.1984.02.0020]
[2]梁学信,吴在德.一类退缩反应扩散方程解的有界性与衰减估计[J].华侨大学学报(自然科学版),1988,9(4):434.[doi:10.11830/ISSN.1000-5013.1988.04.0434]
 Liang Xuexin,Wu Zaide.The Boundedness and Decay Estimate of the Solutions for a Class Degenerate Reaction Diffusion Equations[J].Journal of Huaqiao University(Natural Science),1988,9(预先出版):434.[doi:10.11830/ISSN.1000-5013.1988.04.0434]
[3]邹黄辉,王全义.非线性奇异三阶两点边值问题单调正解的存在性[J].华侨大学学报(自然科学版),2012,33(6):699.[doi:10.11830/ISSN.1000-5013.2012.06.0699]
 ZOU Huang-hui,WANG Quan-yi.Existence on Monotone Positive Solutions for Nonlinear Singular Third Order Two-Point Boundary Value Problems[J].Journal of Huaqiao University(Natural Science),2012,33(预先出版):699.[doi:10.11830/ISSN.1000-5013.2012.06.0699]
[4]陈东晓,陈应生.二阶微分方程积分边值问题正解的存在性[J].华侨大学学报(自然科学版),2013,34(5):586.[doi:10.11830/ISSN.1000-5013.2013.05.0586]
 CHEN Dong-xiao,CHEN Ying-sheng.Existence Positive Solutions of Boundary Value Problems for Second Order Differential Equations with Integral Conditions[J].Journal of Huaqiao University(Natural Science),2013,34(预先出版):586.[doi:10.11830/ISSN.1000-5013.2013.05.0586]
[5]杨军,刘东利.高阶分数阶微分方程边值问题解的存在性[J].华侨大学学报(自然科学版),2013,34(6):716.[doi:10.11830/ISSN.1000-5013.2013.06.0716]
 YANG Jun,LIU Dong-li.Existence of Solutions for Boundary Value Problem of Fractional High-Order Differential Equations[J].Journal of Huaqiao University(Natural Science),2013,34(预先出版):716.[doi:10.11830/ISSN.1000-5013.2013.06.0716]
[6]王全义,邹黄辉.一类n阶非线性三点边值问题单调正解的存在性[J].华侨大学学报(自然科学版),2014,35(3):344.[doi:10.11830/ISSN.1000-5013.2014.03.0344]
 WANG Quan-yi,ZOU Huang-hui.Monotone Positive Solutions for A Class of nth Order Nonlinear Three-Point Boundary Value Problems[J].Journal of Huaqiao University(Natural Science),2014,35(预先出版):344.[doi:10.11830/ISSN.1000-5013.2014.03.0344]
[7]许国安,余赞平.具有转向点的奇摄动二阶拟线性边值问题[J].华侨大学学报(自然科学版),2010,31(3):346.[doi:10.11830/ISSN.1000-5013.2010.03.0346]
 XU Guo-an,YU Zan-ping.Singular Perturbation of Second Order Quasilinear Boundary Value Problem with Turning Point[J].Journal of Huaqiao University(Natural Science),2010,31(预先出版):346.[doi:10.11830/ISSN.1000-5013.2010.03.0346]
[8]许国安,余赞平.具有多个转向点的奇摄动二阶拟线性边值问题[J].华侨大学学报(自然科学版),2014,35(4):472.[doi:10.11830/ISSN.1000-5013.2014.04.0472]
 XU Guo-an,YU Zan-ping.Singular Perturbation Second Order Quasilinear Boundary Value Problem with Multi-Turning Point[J].Journal of Huaqiao University(Natural Science),2014,35(预先出版):472.[doi:10.11830/ISSN.1000-5013.2014.04.0472]

备注/Memo

备注/Memo:
收稿日期: 2013-04-09
通信作者: 许国安(1981-),男,讲师,主要从事常微分奇异摄动理论的研究.E-mail:xga99163@163.com.
基金项目: 华侨大学科研基金资助项目, 中央高校基本科研业务费专项资金资助项目(10HZR25)
更新日期/Last Update: 1900-01-01