[1]严丽,王启志.GA-Elman网络的网络控制系统预测[J].华侨大学学报(自然科学版),2014,35(6):620-624.[doi:10.11830/ISSN.1000-5013.2014.06.0620]
 YAN Li,WANG Qi-zhi.Network Control System Prediction Based on GA-Elman Network[J].Journal of Huaqiao University(Natural Science),2014,35(6):620-624.[doi:10.11830/ISSN.1000-5013.2014.06.0620]
点击复制

GA-Elman网络的网络控制系统预测()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第35卷
期数:
2014年第6期
页码:
620-624
栏目:
出版日期:
2014-11-20

文章信息/Info

Title:
Network Control System Prediction Based on GA-Elman Network
文章编号:
1000-5013(2014)06-0620-05
作者:
严丽 王启志
华侨大学 机电及自动化学院, 福建 厦门 361021
Author(s):
YAN Li WANG Qi-zhi
College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China
关键词:
网络控制系统 时延采样值 Elman神经网络 遗传算法
Keywords:
network control system delay sampling value Elman neural network genetic algorithm
分类号:
TP183;TP273
DOI:
10.11830/ISSN.1000-5013.2014.06.0620
文献标志码:
A
摘要:
为了消除网络时延对网络控制系统的影响,采用Elman神经网络预测系统时延采样值,并用遗传算法优化神经网络权值阈值.实验仿真表明:经遗传算法优化后的Elman神经网络具有很好的预测精度及动态性能,能够消除时延的影响,并验证了该方法对时延采样值预测的有效性.
Abstract:
In order to eliminate the effects of network delay on the network control system, this paper uses Elman neural network to predict the system delay sampling value and genetic algorithm to optimize the neural network weights threshold. The experimental simulation shows that Elman neural network optimized by genetic algorithm has good prediction accuracy and dynamic performance and can eliminate the influence of time delay. The method that can eliminate the effects of network delay.

参考文献/References:

[1] 邱占芝,张庆灵,杨舂雨.网络控制系统分析与控制[M].北京:科学出版社,2009:1-20.
[2] BAO Yong,DAI Qiu-qiu,CUI Ying-liu,et al.Fault detection based on robust states observer on networked control systems[C]//International Conference on Control and Automation.Budapest:IEEE Press.2005:1237-1241.
[3] YI Jian-qiang,WANG Qian,ZHAO Dong-bin,et al.BP neural network prediction-based variable-period sampling approach for networked control systems[J].Applied Mathematics and Computation,2007,185(2007):976-988.
[4] 张捷,薄煜明,吕明.基于神经网络预测的网络控制系统故障检测[J].南京理工大学学报:自然科学版,2010,34(1):19-23.
[5] KINJAL J,MAHESH P.Optimizing weights of artificial neural networks using genetic algorithms[J].International Journal of Advanced Research in Computer Science and Electronics Engineering,2012,1(10):47-51.
[6] 付宝英,王启志.改进型补偿模糊神经网络故障诊断系统[J].华侨大学学报:自然科学版,2012,33(1):1-5.
[7] LIOUC Cheng-yuan,HUANG Jau-chi,YANG Wen-chie.Modeling word perception using the elman network[J].Neurocomputing,2008,71(16/18):3150-3157.
[8] 王俊松.基于Elman神经网络的网络流量建模及预测[J].计算机工程,2009,35(9):190-191.
[9] 何大阔,王福利,毛志忠.遗传算法在离散变量优化问题中的应用研究[J].系统仿真学报,2006,15(5):1154-1156.
[10] 李敏强,寇纪淞.遗传算法的基本理论与应用[M].北京:科学出版社,2002:52-130.

备注/Memo

备注/Memo:
收稿日期: 2014-04-01
通信作者: 王启志(1971-),男,副研究员,主要从事复杂过程控制和智能控制的研究.E-mail:wangqz@hqu.edu.cn.
基金项目: 福建省自然科学基金资助项目(A0640004); 华侨大学高层次人才科研启动项目(13BS305); 华侨大学横向科研资助项目(43201142)
更新日期/Last Update: 2014-11-20