[1]林大炜,林从谋,黄逸群,等.小净距2扩4隧道变形规律的BP小波神经预测[J].华侨大学学报(自然科学版),2014,35(2):207-211.[doi:10.11830/ISSN.1000-5013.2014.02.0207]
 LIN Da-wei,LIN Cong-mou,HUANG Yi-qun,et al.BP Wavelet Neural Prediction of Deformation Law of Two-to-Four Lane Tunnels with Small Clear Interval[J].Journal of Huaqiao University(Natural Science),2014,35(2):207-211.[doi:10.11830/ISSN.1000-5013.2014.02.0207]
点击复制

小净距2扩4隧道变形规律的BP小波神经预测()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第35卷
期数:
2014年第2期
页码:
207-211
栏目:
出版日期:
2014-03-20

文章信息/Info

Title:
BP Wavelet Neural Prediction of Deformation Law of Two-to-Four Lane Tunnels with Small Clear Interval
文章编号:
1000-5013(2014)02-0207-05
作者:
林大炜 林从谋 黄逸群 黄清祥 孟希
华侨大学 岩土工程研究所, 福建 泉州 362021
Author(s):
LIN Da-wei LIN Cong-mou HUANG Yi-qun HUANG Qing-xiang MENG Xi
Institute of Geotechnical Engineering, Huaqiao University, Quanzhou 362021, China
关键词:
隧道 围岩 变形规律 BP小波神经网络 预测方法 小净距 扩挖
Keywords:
tunnel surrounding rock deformation BP wavelet neural network prediction method small interval expansion excavation
分类号:
U456.3
DOI:
10.11830/ISSN.1000-5013.2014.02.0207
文献标志码:
A
摘要:
以泉厦高速扩建工程大帽山隧道为例,通过周边位移和拱顶沉降的监测数据对小净距扩挖隧道的围岩变形规律进行分析.研究表明:小净距2扩4隧道具有和其他隧道不同的变形规律.在此基础上将小波函数引入BP神经网络建立BP小波神经网络模型,对特大断面超小净距隧道2扩4时围岩变形进行预测,并将预测结果与BP神经网络的预测结果进行对比.结果表明:BP小波神经网络模型收敛快、精度高,优于BP神经网络模型,预测的精度达10%以内,满足工程精度要求.
Abstract:
Taking the expansion engineering Damaoshan tunnels in the expressway from Quanzhou to Xiamen as an example, the deformation of surrounding rock of small interval expanded tunnels was analyzed by the monitoring data of peripheral displacement and vault settlement. The results show: the deformation of two-to-four lane tunnels with small clear interval is different to the deformation of other tunnels. Introducing wavelet function to wavelet neural network, BP wavelet neural network model was established to predict the surrounding rock deformation of extra-large section and two-to-four lane tunnels with small clear interval. Comparing BP wavelet neural network results with BP neural network results, it is indicated: BP wavelet neural network model has faster convergence and higher precision than BP neural network model. The accuracy of the forecast results is in 10%, which meets the engineering requirement.

参考文献/References:

[1] 陈建勋,王梦恕,轩俊杰,等.两车道公路黄土隧道变形规律[J].交通运输工程学报,2012,12(3):9-18.
[2] 张端良,王剑,张运良.软弱围岩隧道变形规律与施工安全控制技术[J].公路工程,2011,36(2):124-128.
[3] 段宝福,翁现合.炭质页岩小净距隧道围岩变形规律研究[J].施工技术,2012,41(374):87-89.
[4] 赵东平,喻渝,王明年,等.大断面黄土隧道变形规律及预留变形量研究[J].现代隧道技术,2009,46(6):64-69.
[5] 何宗文.大跨度砂质粘土隧道施工变形规律研究[J].现代隧道技术,2009,46(4):12-18.
[6] 李长洪,范丽萍,郭俊温.小波神经网络在露天矿边坡变形预测中的应用[J].中国矿业,2010,19(7):77-79.
[7] 王博,商岸帆,郭晨,等.小波神经网络在基坑变形预测的研究与应用[J].计算机工程与应用,2012,48(19):225-229.
[8] 林景栋,王丰,廖孝勇.基于小波神经网络的铝电解槽状态预测[J].控制工程,2012,19(2):290-293.
[9] 王宇谱,吕志平.小波神经网络日长预报算法研究[J].大地测量与地球动力学,2012,32(1):127-131.
[10] 张在晨,林从谋,黄志波,等.爆破振动特征参量的BP小波预测[J].华侨大学学报:自然科学版,2013,34(1):77-81.
[11] 黄志波,林从谋,黄金山,等.BP小波神经网络在大断面隧道变形预测中的应用[J].华侨大学学报:自然科学版,2011,32(6):680-683.
[12] 梁桂兰,徐卫亚,谈小龙,等.岩石高边坡安全监测数据的小波变换去噪处理[J].岩石力学与工程学报,2008,27(9):1837-1844.
[13] 吕俊白.小波系数局部特征的自适应图像降噪算法[J].华侨大学学报:自然科学版,2010,31(6):636-640.

相似文献/References:

[1]郑强,林从谋,孟凡兵.采用统一强度理论的锚喷支护围岩弹塑性统一解[J].华侨大学学报(自然科学版),2011,32(3):326.[doi:10.11830/ISSN.1000-5013.2011.03.0326]
 ZHENG Qiang,LIN Cong-mou,MENG Fan-bing.Elastic-Plastic Unified Solution of Shotcrete-Anchorage Support Surrounding Rock Based on Unified Strength Theory[J].Journal of Huaqiao University(Natural Science),2011,32(2):326.[doi:10.11830/ISSN.1000-5013.2011.03.0326]
[2]黄志波,林从谋,陈莹,等.隧道洞口土体塌方的可靠度分析[J].华侨大学学报(自然科学版),2012,33(5):557.[doi:10.11830/ISSN.1000-5013.2012.05.0557]
 HUANG Zhi-bo,LIN Cong-mou,CHEN Ying,et al.Analysis of the Soil Collapse Reliability at the Tunnel Entrance[J].Journal of Huaqiao University(Natural Science),2012,33(2):557.[doi:10.11830/ISSN.1000-5013.2012.05.0557]
[3]黄逸群,林从谋,黄清祥,等.隧道型钢喷混凝土初期支护的可靠度计算方法及应用[J].华侨大学学报(自然科学版),2014,35(2):212.[doi:10.11830/ISSN.1000-5013.2014.02.0212]
 HUANG Yi-qun,LIN Cong-mou,HUANG Qing-xiang,et al.Reliability Calculation Method on Tunnel Primary Lining of Shaped Steel Reinforced Shotcrete and Application[J].Journal of Huaqiao University(Natural Science),2014,35(2):212.[doi:10.11830/ISSN.1000-5013.2014.02.0212]
[4]丁小平,刘昭,史宝童,等.复合衬砌量化修正渗透系数隧道涌水量的计算方法[J].华侨大学学报(自然科学版),2015,36(4):461.[doi:10.11830/ISSN.1000-5013.2015.04.0461]
 DING Xiao-ping,LIU Zhao,SHI Bao-tong,et al.Calculation on the Calculation Method of Tunnel Water InflowBased on Quantitative Correction Coefficient ofPermeability Composite Lining[J].Journal of Huaqiao University(Natural Science),2015,36(2):461.[doi:10.11830/ISSN.1000-5013.2015.04.0461]

备注/Memo

备注/Memo:
收稿日期: 2013-06-20
通信作者: 林从谋(1957-),男,教授,主要从事隧道与岩土工程设计与施工的研究.E-mail:cmlin@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(51278208); 福建省交通科技发展基金资助项目(200910)
更新日期/Last Update: 2014-03-20