[1]郭少伟,吕常江,张意,等.沼泽红假单胞菌砷代谢基因多样性及进化分析[J].华侨大学学报(自然科学版),2014,35(2):175-179.[doi:10.11830/ISSN.1000-5013.2014.02.0175]
 GUO Shao-wei,LYU Chang-jiang,ZHANG Yi,et al.Diversity and Evolutionary Analysis of Arsenic Metabolism Gene in R. palustris[J].Journal of Huaqiao University(Natural Science),2014,35(2):175-179.[doi:10.11830/ISSN.1000-5013.2014.02.0175]
点击复制

沼泽红假单胞菌砷代谢基因多样性及进化分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第35卷
期数:
2014年第2期
页码:
175-179
栏目:
出版日期:
2014-03-20

文章信息/Info

Title:
Diversity and Evolutionary Analysis of Arsenic Metabolism Gene in R. palustris
文章编号:
1000-5013(2014)02-0175-05
作者:
郭少伟1 吕常江12 张意1 赵春贵1
1. 华侨大学 化工学院, 福建 厦门 361021;2. 浙江大学 化学工程与生物工程学系, 浙江 杭州 310027
Author(s):
GUO Shao-wei1 LYU Chang-jiang12 ZHANG Yi1 ZHAO Chun-gui1
1. College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; 2. Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
关键词:
沼泽红假单胞菌 砷抗性 基因簇 生物信息学
Keywords:
Rhodopseudomonas palustris arsenic resistance gene clusters bioinformatics
分类号:
Q811.4
DOI:
10.11830/ISSN.1000-5013.2014.02.0175
文献标志码:
A
摘要:
对已公布全基因组的沼泽红假单胞菌(Rhodopseudanonas palustris)砷代谢基因进行解析,探求其砷代谢机制及进化关系.已公布全基因组的7个菌株中均含有砷抗性(ars)基因簇,主要包括arsR,arsC,arsM,arsB,acr3p,arsH,但不同菌株间的arsR同源性可以有较大差异,有6个菌株同时含有Ⅰ和Ⅱ两类arsC,5个菌株含有arsM,arsM同源性也有较大差异.结果表明:R. palustris砷代谢机制的主体为细胞质As(Ⅴ)还原和As(Ⅲ)甲基化,菌株不同,砷代谢基因呈现
Abstract:
The arsenic metabolic mechanisms and evolution relations of the arsenic metabolic genes in Rhodopseudomonas palustris were explored based on the data of the whole genome sequence. The results showed that arsenic metabolic gene clusters existed in seven R. palustris strains mainly contained arsC, arsR, arsM, arsB, acr3p and arsH genes. There was considerable regulation gene(arsR)diversity among R. palustris strains in same species. Both type Ⅰ and type Ⅱ of ArsC were found in six strains of R. palustris, and the arsM gene with low homology in different R. palustris strains was widely found in five strains. It is also manifested that arsenic metabolic mechanisms were mainly arsenate reduction and arsenite methylation in cytoplasm, whereas the distinction and diversity of arsenic metabolic genes were relied on different strains.

参考文献/References:

[1] MUKHOPADHYAY R,ROSEN B P,PHUNG L T,et al.Microbial arsenic: From geocycles to genes and enzymes[J].FEMS Microbiol Rev,2002,26(3):311-325.
[2] 王革娇,黄银燕,李洁.“吃”砒霜的细菌: 解析微生物的砷代谢[J].微生物学报,2011,51(2):154-160.
[3] ERB T J,KIEFER P,HATTENDORF B,et al.GFAJ-1 is an arsenate-resistant, phosphate-dependent organism[J].Science,2012,337(6093):467-470.
[4] LARIMER F W,CHAIN P,HAUSER L,et al.Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris[J].Nat Biotechnol,2004,22(1):55-61.
[5] HUNTER C N,DALDAL F,THURNAUER M C,et al.The purple phototrophic bacteria[M].Netherlands:Springer,2009:577-689.
[6] QIN J,ROSEN B P,ZHANG Y,et al.Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase[J].Proc Nati Acad Sci,2006,103(7):2075-2080.
[7] 吕常江,张永雨,赵春贵,等.光照厌氧条件下沼泽红假单胞菌对砷的抗性及其机制[J].环境科学学报,2012,32(10):2375-2383.
[8] 吕常江,赵春贵,杨素萍,等.紫色非硫细菌的砷代谢机制[J].微生物学报,2012,52(12):1497-1507.
[9] ROSEN B P.Biochemistry of arsenic detoxification[J].FEBS Lett,2002,592(1):86-92.
[10] SILVER S,PHUNG L T.Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic[J].Appl Environ Microb,2005,71(2):599-608.
[11] PAEZ-ESPINO D,TAMAMES J,DE LORENZO V,et al.Microbial responses to environmental arsenic[J].Biometals,2009,22(1):117-130.
[12] DARLING AE,MAU B,PERNA N T.ProgressiveMauve: Multiple genome alignment with gene gain, loss and rearrangement[J].PLoS One,2010,5(6):e11147.
[13] 蔡林,王革娇.抗砷性微生物及其抗砷分子机制研究进展[J].微生物学通报,2009,36(8):1253-1259.
[14] VILLADANGOS A F,BELLE K V,WAHNI K,et al.Corynebacterium glutamicum survives arsenic stress with arsenate reductases coupled to two distinct redox mechanisms[J].Mol Microbiol,2011,82(4):998-1014.
[15] LI R,HAILE J D,KENNELLY P J.An arsenate reductase from Synechocystis sp. strain PCC6803 exhibits a novel combination of catalytic characteristics[J].J Bacteriol,2003,185(23):6780-6789.
[16] LOPEZ-MAURY L,SANCHEZ-RIEGO A M,REYES J C,et al.The glutathione/glutaredoxin system is essential for arsenate reduction in Synechocystis sp. strain PCC6803[J].J Bacteriol,2009,191(11):3534-3543.
[17] KIM S G,CHUNG J S,SUTTON R B,et al.Redox, mutagenic and structural studies of the glutaredoxin/arsenate reductase couple from the cyanobacterium Synechocystis sp. PCC6803[J].Biochim Biophys Acta,2012,1824(2):392-403.
[18] BENTLEY R,CHASTEEN T G.Microbial methylation of metalloids: Arsenic, antimony, and bismuth[J].Microbio Mol Biol R,2002,66(2):250-271.

备注/Memo

备注/Memo:
收稿日期: 2013-04-28
通信作者: 赵春贵(1964-),男,教授,主要从事微生物学、生物化学与分子生物学、化学生物学等的研究.E-mail:chungui@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(31070054, 31270106); 福建省自然科学基金资助项目(2010J01209, 2012J01136)
更新日期/Last Update: 2014-03-20