[1]蔡成杰,杨卫华,杨武涛,等.PEG改性Bi-PbO2电极对茜素绿的电催化降解作用[J].华侨大学学报(自然科学版),2014,35(2):165-168.[doi:10.11830/ISSN.1000-5013.2014.02.0165]
 CAI Cheng-jie,YANG Wei-hua,YANG Wu-tao,et al.Electrocatalytic Degradation of Alizarin Green by PEG Modified Bi-PbO2 Electrode[J].Journal of Huaqiao University(Natural Science),2014,35(2):165-168.[doi:10.11830/ISSN.1000-5013.2014.02.0165]
点击复制

PEG改性Bi-PbO2电极对茜素绿的电催化降解作用()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第35卷
期数:
2014年第2期
页码:
165-168
栏目:
出版日期:
2014-03-20

文章信息/Info

Title:
Electrocatalytic Degradation of Alizarin Green by PEG Modified Bi-PbO2 Electrode
文章编号:
1000-5013(2014)02-0165-04
作者:
蔡成杰 杨卫华 杨武涛 林小燕
华侨大学 材料科学与工程学院, 福建 厦门 361021
Author(s):
CAI Cheng-jie YANG Wei-hua YANG Wu-tao LIU Xiao-yan
College of Material Science and Engineering, Huaqiao University, Xiamen 361021, China
关键词:
茜素绿 PEG-Bi-PbO2电极 电催化氧化 蒽醌染料 一级反应动力学
Keywords:
alizarin green PEG-Bi-PbO2 electrode electrocatalytic oxidation anthraquinone dye first order kinetics
分类号:
X505
DOI:
10.11830/ISSN.1000-5013.2014.02.0165
文献标志码:
A
摘要:
利用聚乙二醇(PEG)改性Bi-PbO2电极电催化氧化茜素绿(AG)模拟染料废水,研究初始质量浓度、电流密度和pH值对降解率的影响.结果表明:高电流密度有利于提高降解率,但可能导致较大的能源浪费;高初始质量浓度有利于提高电流利用率;而pH值不是降解率的主要影响因素.利用红外光谱对AG的氧化过程进行研究,表明AG的氧化主要依靠电解产生的·OH,氧化过程经历了苯环开环、断链,并进一步被氧化为CO2和H2O等小分子化合物.化学动力学研究表明,电催
Abstract:
The polyethylene glycol(PEG)modified Bi-PbO2 electrode was used to investigate the electrode oxidation of dye wastewater simulated by alizarin green(AG). The influence of initial mass concentration, current density and pH value on the degradation rate was investigated. Results show that high current density will help improve the degradation rate but may lead to a large energy waste; high initial mass concentration is favorable to increase the current utilization; while pH value is not the main factors of degradation rate. Infrared spectroscopy was used to a preliminary study of AG oxidation process. Results indicate that oxidation of AG relies mainly on electrolysis produced ·OH. The oxidation process involves benzene open-loop, chain scission, and further oxidized to small molecule compounds such as CO2 and H2O. Chemical kinetics study indicates that the electrocatalytic oxidation of AG follows first order reaction kinetics law.

参考文献/References:

[1] 赵风云,孙根行.工业废水生物毒性的研究进展[J].工业水处理,2010,30(4):22-25.
[2] PINHEIRO H M,TOURAUD E,THOMAS O.Aromatic amines from azo dye reduction:status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters[J].Dyes and Pigments,2004,61(2):121-139.
[3] BASHEER C,OBBARD J P,LEE H K.Persistent organic pollutants in Singapore’s coastal marine environment: Part Ⅰ: Sea water[J].Water Air and Soil Pollution,2003,149(1/2/3/4):295-313.
[4] SENTHILKUMAR M,ARUTCHELVAN V,KANAKASABAI V,et al.Biomineralisation of dye waste in a two-phase hybrid UASB reactor using starch effluent as a co-substrate[J].International Journal of Environment and Waste Management,2009,3(3/4):354-365.
[5] CAO Zhong,CAO Xue-qiang,SUN Li-xian,et al.UV-vis/ferrioxalate/H2O2 system on degradation of anthraquinone dye waste-water[J].Advanced Materials Research,2011:239-242:2597-2601.
[6] HARRELKAS F,AZIZI A,YAACOUBI A.Treatment of textile dye effluents using coagulation-flocculation coupled with membrane processes or adsorption on powdered activated carbon[J].Desalination,2009,235(1/2/3):330-339.
[7] 杨波,冯利东,张丽媛.漆酶对活性艳蓝染料废水脱色[J].环境工程学报,2012,6(10):3514-3518.
[8] PREETHI V,PARAMA K K S,IYAPPAN K,et al.Ozonation of tannery effluent for removal of cod and color[J].Journal of Hazardous Materials,2009,116(1):150-154.
[9] RAGHU S,BASHA C A.Chemical or electrochemical techniques, followed by ion exchange, for recycle of textile dye wastewater[J].Journal of Hazardous Material,2007,149(2):324-330.
[10] 卓琼芳,杨波,登述波,等.用于有机物降解的电化学阳极材料[J].化学进展,2012,4(24):628-636.
[11] BELGSIR E M,BOUHIER E,YEI E K B,et al.Electrosynthesis in aqueous medium: A kinetic study of the electrocatalytic oxidation of oxygenated organic molecules[J].Electrochimica Acta,1991,36(7):1157-1164.
[12] YANG Wei-hua,YANG Wu-tao,LIN Xiao-yan.Research on PEG modified bi-doping lead dioxide electrode and mechanism[J].Applied Surface Science,2012,258(15):5716-5722.
[13] ZHU Xiu-ping,NI Jin-ren,LI Hong-na,et al.Effects of ultrasound on electrochemical oxidation mechanisms of p-substituted phenols at BDD and PbO2 anodes[J].Electrochemica Acta,2010,55(20):5569-5575.
[14] LIU Hui-ling,LIU Yuan,ZHANG Cheng,et al.Electrocatalytic oxidation of nitrophenols in aqueous solution using modified PbO2 electrodes[J].Journal of Applied Electrochemistry,2008,38(1):101-108.
[15] LEE H,SHODA M.Removal of COD and color from livestock wastewater by the Fenton method[J].Journal of Hazardous Materials,2008,153(3):1314-1319.
[16] KONG Jiang-tao,SHI Shao-yuan,KONG Ling-cai Kong,et al.Preparation and characterization of PbO2 electrodes doped with different rare earth oxides[J].Electrochimica Acta,2007,53(4):2048-2054.
[17] KHATAEE A R,PONS M N,ZAHRAA O.Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: Influence of dye molecular structure[J].Journal of Hazardous Materials,2009,168(1):451-457.
[18] WANG Hui,SUN De-zhi,BIAN Zhao-yong.Degradation mechanism of diethyl phthalate with electrogenerated hydroxyl radical on a Pd/C gas-diffusion electrode[J].Journal of Hazardous Materials,2010,180(1/2/3):710-715.

备注/Memo

备注/Memo:
收稿日期: 2013-08-10
通信作者: 杨卫华(1974-),女,副教授,主要从事电化学、新型环境友好材料的研究.E-mail:yangwh@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(21103055); 华侨大学基本科研业务专项基金资助项目(JB-ZR1139)
更新日期/Last Update: 2014-03-20