参考文献/References:
[1] VAPNIK V.The nature of statitiscal learning theory[M].New York:Spring Verlag Press,1995:4-15.
[2] WANG Wen-jian,XU Zong-ben,LU Wei-zhen,et al.Determination of the spread parameter in the Gaussian kernel for classification and regression[J].Neurocomputing,2003,55(3/4):643-663.
[3] 孙建涛,郭崇慧,陆玉昌,等.多项式核支持向量机文本分类器泛化性能分析[J].计算机研究与发展,2004,41(8):1321-1326.
[4] 张莉,周伟达,焦李成.一类新的支撑矢量机核[J].软件学报,2002,13(4):713-718.
[5] WANG Jin-jun,YANG Jian-chao,YU Kai,et al.Locality constrained linear coding for image classification[J].CVPR,2010,15(3):456-470.
[6] WANG Xiao-ming,CHUNG Fu-lai,WANG Shi-tong.Theoretical analysis for solution of support vector data description[J].Neural Networks,2011,24(4):360-369.
[7] ZAFEIRIOU S,TEFAS A,PITAS I.Minimum class variance support vector machines[J].IEEE Transanctions on Image Processing,2007,16(10):2551-2564.
[8] ZHOU Xi,CUI Na,LI Zhen,et al.Hierarchical gaussianization for image classification[J].ICCV,2009,18(3):79-90.
[9] HUANG Kai-zhu,YANG Hai-qing,KING I,et al.Maxi-min margin machine: Learning large margin classifiers locally and globally[J].IEEE Transanctions on Neural Networks,2008,19(2):260-272.
[10] YU Kai,ZHANG Tong,GONG Yi-hong.Nonlinear learning using local coordinate coding[J].NIPS,2009,26(8):342-356.
[11] CHOI Y S.Least squares one-class support vector machine[J].Pattern Recognition Letters,2009,30(13):1236-1240.
[12] GAO Sheng-hua,TSANG I W H,CHIA L T,et al.Local features are not lonely laplacian sparse coding for image classification[J].CVPR,2010,18(6):126-138.
[13] 周伟达,张莉,焦李成.一种改进的推广能力度量标准[J].计算机学报,2003,26(5):598-604.
[14] WU Si,AMARI S I.Conformal transformation of kernel functions: A data-dependent way to improve support vector machine classifiers[J].Neural Processing Letters,2002,15(1):59-67.
[15] CHAPELLE O,VAPNIK V.Model selection for support vector machines[C]//Advances in Neural Information Processing Systems 12.Cambridge:MIT Press,2001:120-155.
[16] VAPNIK V.The nature of statitiscal learning theory[M].New York:Spring-Verlag Press,1995:88-125.
[17] COX T,COX M.Multidimensional Scaling[M].London:Chapman & Hall,1994:145-150.