[1]蒲利群,方佳,马俊.推广的几乎可分解的26圈系[J].华侨大学学报(自然科学版),2013,34(2):236-240.[doi:10.11830/ISSN.1000-5013.2013.02.0236]
 PU Li-qun,FANG Jia,MA Jun.Generalized Almost Resolvable 26-Cycle Systems[J].Journal of Huaqiao University(Natural Science),2013,34(2):236-240.[doi:10.11830/ISSN.1000-5013.2013.02.0236]
点击复制

推广的几乎可分解的26圈系()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第34卷
期数:
2013年第2期
页码:
236-240
栏目:
出版日期:
2013-03-20

文章信息/Info

Title:
Generalized Almost Resolvable 26-Cycle Systems
文章编号:
1000-5013(2013)02-0236-05
作者:
蒲利群1 方佳1 马俊2
1. 郑州大学 数学系, 河南 郑州 450001;2. 上海交通大学 数学系, 上海 200240
Author(s):
PU Li-qun1 FANG Jia1 MA Jun2
1. Department of Mathematics, Zhengzhou University, Zhengzhou 450001, China; 2. Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China
关键词:
圈系 可分解圈系 几乎可分解圈系 推广的几乎可分解圈系 平行类
Keywords:
cycle system resolvability almost resolvability cycle system generalized almost resolvability cycle system parallel class
分类号:
O157.2
DOI:
10.11830/ISSN.1000-5013.2013.02.0236
文献标志码:
A
摘要:
研究推广的几乎可分解圈系(ARCS)的存在性,利用差的方法,证明了阶为n的推广的几乎可分解圈系(GARCS)存在的充分必要条件为:n≡13(mod 52). 推广了P. Adams等提出的方法构造26GARCS(n),进一步给出26GARCS(n)的谱.
Abstract:
By the method of differences, the paper considers the existence of generalized almost resolvable-cycle system with order n which is the extension of almost resolvable cycle system. It is proved that the necessary and sufficient condition for the existence of generalized almost resolvable 26-cycle system of order is n≡13(mod 52). Generalizing P. Adams’s method to construct 26GARCS(n), we also give its spectrum.

参考文献/References:

[1] ALSPACH B,GAVLAS H.Cycle decompositions of and[J].J Combin Theory B Ser, 2001,81(1):77-99.
[2] SAJNA M.Cycle decompositions: Complete graphs and fixed length cycles[J].J Combin Designs,2002,10(1):27-78.
[3] ALSPACH B,SCHELLENBERG P J,STINSON D R,et al. The Oberwolfach problem and factors of uniform odd length cycles[J].J Combin Theory A Ser,1989,52(1):20-43.
[4] PIOTROWSKI W L. The solution of the bipartite analogue of the Oberwolfach problem[J].Discrete Math,1991,97(3):339-356.
[5] VANSTONE S A,STINSON D R,SCHELLENBERG P J,et al. Hanani triple systems[J].Israel J Math,1993,83(3):305-319.
[6] LINDNER C C,MESZKA M,ROSA A.Almost resolvable cycle systems: An analogue of Hanani triple systems[J].J Combin Designs,2009,17(5):404-410.
[7] PETER A,ELIZABETH J B,HOFFMAN D G,et al.The generalized almost resolvable cycle system problem[J].J Combin Math,2010,30(6):617-625.
[8] DEJTER I J,LINDNER C C,MESZKA M,et al. Almost resolcable 26-cycle systems[J].J Combin Math Combin Computing,2007,63(2):173-182.
[9] LINDNER C C,RODGER C A.Design theory[M].Bocaraton: CRC Press,1997:137-159.

备注/Memo

备注/Memo:
收稿日期: 2012-10-10
通信作者: 蒲利群(1966-),女,副教授,主要从事组合设计与编码理论的研究.E-mail:liqunpu@zzu.edu.cn.
基金项目: 国家自然科学基金资助项目(11071163)
更新日期/Last Update: 2013-03-20