[1]邹黄辉,王全义.非线性奇异三阶两点边值问题单调正解的存在性[J].华侨大学学报(自然科学版),2012,33(6):699-704.[doi:10.11830/ISSN.1000-5013.2012.06.0699]
 ZOU Huang-hui,WANG Quan-yi.Existence on Monotone Positive Solutions for Nonlinear Singular Third Order Two-Point Boundary Value Problems[J].Journal of Huaqiao University(Natural Science),2012,33(6):699-704.[doi:10.11830/ISSN.1000-5013.2012.06.0699]
点击复制

非线性奇异三阶两点边值问题单调正解的存在性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第33卷
期数:
2012年第6期
页码:
699-704
栏目:
出版日期:
2012-11-20

文章信息/Info

Title:
Existence on Monotone Positive Solutions for Nonlinear Singular Third Order Two-Point Boundary Value Problems
文章编号:
1000-5013(2012)06-0699-06
作者:
邹黄辉 王全义
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
ZOU Huang-hui WANG Quan-yi
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
单调正解 边值问题 不动点定理
Keywords:
cone positive solutions boundary value problem fixed point theory
分类号:
O175.8
DOI:
10.11830/ISSN.1000-5013.2012.06.0699
文献标志码:
A
摘要:
利用锥压缩锥拉伸不动点定理及一些分析技巧, 建立一类非线性奇异三阶两点边值问题存在一个及多个单调正解的充分条件,推广和改进了前人的研究成果.
Abstract:
In this paper, we establish some new sufficient conditions for the existence of one and multiple monotone positive solutions for nonlinear singular third order two-point boundary value problems by employing the cone compression and extension fixed point theorem and some analytical skills. Our results extend and improve the relative results.

参考文献/References:

[1] LIU Ze-qing,DEBNATH L,KANG S M.Existence of monotone positive solutions to a third order two-point generalized right focal boundary value problem[J].Computers and Mathematics with Applications,2008,55(3):356-367.
[2] 徐斌.非线性三阶边值问题的多解性[J].北京师范大学学报:自然科学版,2004,40(4):448-451.
[3] 孙彦.三阶奇异边值问题的正解[J].应用数学学报,2009,32(1):50-59.
[4] 冯玉强,刘三阳,姚庆六.关于三阶边值问题的解的存在性[J].应用数学学报,2003,16(3):108-111.
[5] 姚庆六.三阶常微分方程的某些非线性特征值问题的正解[J].数学物理学报,2003,A23(1):513.
[6] 姚庆六.奇异三阶两点边值问题的相伴正解[J].山东大学学报:理学版,2010,45(12):24-27.
[7] LIU Ze-qing,UME J S,KANG S M.Positive solutions of singular third order two-point boundary value problems[J].J Math Anal Appl,2007,326(1):589-601.
[8] GUPTA C P.On a third-order boundary value problem at resonance[J].Diff Integral Equ,1987,2:1-12.
[9] El-SHAHED M.Positive solutions for nonlinear singular third order boundary value problem[J].Communications in Nonlinear Science and Numerical and Numerical Simulation,2009,14(2):424-429.
[10] YAO Qing-liu,FENG Yu-qiang.The existence of solution for a third-order two-point boundary value problem[J].Applied Mathematics Letters,2002,15(2):227-232.
[11] LI Shu-hong.Positive solutions of nonlinear singular third order two-point boundary value problems[J].J Math Anal Appl,2006,323(1):413-425.
[12] 曹君艳,王全义.一类二阶微分方程两点边值问题的正解存在性[J].华侨大学学报:自然科学版,2010,35(1):113-117.
[13] 郭大均.非线性范函分析[M].济南: 山东科学技术出版社,2002:286-330.

相似文献/References:

[1]邹黄辉,王全义.一类四阶微分方程积分边值问题正解的存在性[J].华侨大学学报(自然科学版),2011,32(6):699.[doi:10.11830/ISSN.1000-5013.2011.06.0699]
 ZOU Huang-hui,WANG Quan-yi.Existence of Positive Solutions for a Class of Fourth-Order Differential Equations with Integral Boundary Value Problem[J].Journal of Huaqiao University(Natural Science),2011,32(6):699.[doi:10.11830/ISSN.1000-5013.2011.06.0699]
[2]陈应生,汪东树.一阶非线性脉冲微分方程两点边值问题的正解[J].华侨大学学报(自然科学版),2013,34(1):106.[doi:10.11830/ISSN.1000-5013.2013.01.0106]
 CHEN Ying-sheng,WANG Dong-shu.Positive Solutions of Impulsive Boundary Value Problems for First-Order Two-Point Nonlinear Functional Differential Equations[J].Journal of Huaqiao University(Natural Science),2013,34(6):106.[doi:10.11830/ISSN.1000-5013.2013.01.0106]
[3]陈东晓,陈应生.二阶微分方程积分边值问题正解的存在性[J].华侨大学学报(自然科学版),2013,34(5):586.[doi:10.11830/ISSN.1000-5013.2013.05.0586]
 CHEN Dong-xiao,CHEN Ying-sheng.Existence Positive Solutions of Boundary Value Problems for Second Order Differential Equations with Integral Conditions[J].Journal of Huaqiao University(Natural Science),2013,34(6):586.[doi:10.11830/ISSN.1000-5013.2013.05.0586]
[4]王全义,邹黄辉.一类四阶奇异非线性积分边值问题正解的存在性[J].华侨大学学报(自然科学版),2014,35(1):112.[doi:10.11830/ISSN.1000-5013.2014.01.0112]
 WANG Quan-yi,ZOU Huang-hui.Existence of Positive Solutions for a Class of Fourth-Order Singular Nonlinear Integral Boundary Value Problems[J].Journal of Huaqiao University(Natural Science),2014,35(6):112.[doi:10.11830/ISSN.1000-5013.2014.01.0112]
[5]王全义,邹黄辉.一类n阶非线性三点边值问题单调正解的存在性[J].华侨大学学报(自然科学版),2014,35(3):344.[doi:10.11830/ISSN.1000-5013.2014.03.0344]
 WANG Quan-yi,ZOU Huang-hui.Monotone Positive Solutions for A Class of nth Order Nonlinear Three-Point Boundary Value Problems[J].Journal of Huaqiao University(Natural Science),2014,35(6):344.[doi:10.11830/ISSN.1000-5013.2014.03.0344]

备注/Memo

备注/Memo:
收稿日期: 2011-10-28
通信作者: 王全义(1955-),男,教授,主要从事常微分方程和泛函微分方程的研究.E-mail:qywang@hqu.edu.cn.
基金项目: 国务院侨办科研基金资助项目(09QZR10)
更新日期/Last Update: 2012-11-20