[1]叶青.厦门市工程估价的RBF神经网络预测模型[J].华侨大学学报(自然科学版),2012,33(4):446-450.[doi:10.11830/ISSN.1000-5013.2012.04.0446]
 YE Qing.Prediction Model of the Project Cost Estimation Based on RBF Neural Network[J].Journal of Huaqiao University(Natural Science),2012,33(4):446-450.[doi:10.11830/ISSN.1000-5013.2012.04.0446]
点击复制

厦门市工程估价的RBF神经网络预测模型()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第33卷
期数:
2012年第4期
页码:
446-450
栏目:
出版日期:
2012-07-20

文章信息/Info

Title:
Prediction Model of the Project Cost Estimation Based on RBF Neural Network
文章编号:
1000-5013(2012)04-0446-05
作者:
叶青
华侨大学 土木工程学院, 福建 厦门 361021
Author(s):
YE Qing
College of Civil Engineering, Huaqiao University, Xiamen 361021, China
关键词:
工程估价 预测模型 径向基函数 人工神经网络 厦门市
Keywords:
project cost estimation prediction model radial basis function artificial neural network Xiamen city
分类号:
TU723.3;TP183
DOI:
10.11830/ISSN.1000-5013.2012.04.0446
文献标志码:
A
摘要:
选取55个厦门市典型工程造价指标,利用SPSS统计分析软件对工程特征和训练样本进行相关性分析、归类合并,得出11个工程特征作为平米造价的主要影响因素.以径向基函数(RBF)神经网络原理为基础,建立工程造价估算模型,通过试验,选择net=newrb(P,T,0.01,1.0)建立RBF网络,用y=sim(net1,P)对样本进行训练测试.实证分析结果显示:该模型具有计算快捷简便的优势,估算误差在允许范围内,可用于实际工程造价的辅助估算.
Abstract:
55 typical engineering cost indexes in Xiamen city were selected and analyzed, to obtain the correlation of engineering features and training samples by SPSS statistical analysis software. Based on radial basis function(RBF)neural network theory, the project cost estimation model is established. Selecting the net=newrb(P,T,0.01,1.0)to establish RBF network through the test, using y=sim(net1,P)to train and test, the calculation results show that the model has the advantage of convenient calculation, the estimation error is small and allowable, and the model is worth in the project prediction estimation.

参考文献/References:

[1] MOODY J,DARKEN C.Learning with localized receptive fields[C]//Proc Connectionist Models Summer School.San Mateo:Morgan Kaufmann,1998:133-143.
[2] MOODY J,DARKEN C.Fast learning in networks of locally-luned processing units[J].Neural Computation,1989,1(2):281-294.
[3] 叶青,王全凤.基于BP神经网络的工程估价模型及其应用[J].厦门大学学报:自然科学版,2008,47(6):47-51.
[4] 张新红,雷素娟.用QCEA优化的RBF神经网络及其在股市预测的应用[J].华侨大学大学学报:自然科学版,2011,32(3):338-342.
[5] CHEN Tian-ping,CHEN Hong.Approximation theory capability to functions of several variables, nonlinear functions, and operators by radial basis functional neural networks[J].IEEE Trans on Neural Networks,1995,6(4):904-910.
[6] 田景文,高美娟.人工神经网络算法研究及应用[M].北京:北京理工大学出版社,2006.
[7] 段晓牧.基于RBF神经网络的非确定性工程投资估算新方法的研究[D].阜新:辽宁工程技术大学,2003.

相似文献/References:

[1]汪帆.自然通风建筑室内热状况预测模型[J].华侨大学学报(自然科学版),1991,12(2):182.[doi:10.11830/ISSN.1000-5013.1991.02.0182]
 Wang Fan.An Indoor Thermal Characteristics Prediction Model for the Use of Naturally Ventilated Building[J].Journal of Huaqiao University(Natural Science),1991,12(4):182.[doi:10.11830/ISSN.1000-5013.1991.02.0182]
[2]卫海燕.深圳市境外游客市场的动态预测模型分析[J].华侨大学学报(自然科学版),1999,20(3):326.[doi:10.11830/ISSN.1000-5013.1999.03.0326]
 Wei Haiyan.A Dynamic Prediction Model for Analysing the Market of Overseas Tourists in Shenzhen City[J].Journal of Huaqiao University(Natural Science),1999,20(4):326.[doi:10.11830/ISSN.1000-5013.1999.03.0326]
[3]李浩,施养杭.混凝土碳化深度预测模型的比对与分析[J].华侨大学学报(自然科学版),2007,28(2):192.[doi:10.3969/j.issn.1000-5013.2007.02.021]
 LI Hao,SHI Yang-hang.Discussion of Concrete Carbonation Depth Predictive Models[J].Journal of Huaqiao University(Natural Science),2007,28(4):192.[doi:10.3969/j.issn.1000-5013.2007.02.021]
[4]施养杭,李浩.混凝土结构碳化寿命可靠度分析[J].华侨大学学报(自然科学版),2008,29(4):600.[doi:10.11830/ISSN.1000-5013.2008.04.0600]
 SHI Yang-hang,LI Hao.Reliability Analysis on Life of Carbonized Concrete Structure[J].Journal of Huaqiao University(Natural Science),2008,29(4):600.[doi:10.11830/ISSN.1000-5013.2008.04.0600]
[5]莫小琴,李钟慎.混沌时间序列的LSSVM预测方法[J].华侨大学学报(自然科学版),2015,36(预先出版):0.
 MO Xiao-qin,LI Zhong-shen.Prediction Method of the Chaotic Time Series Using Least Squares Support Vector Machine[J].Journal of Huaqiao University(Natural Science),2015,36(4):0.
[6]莫小琴,李钟慎.混沌时间序列的LSSVM预测方法[J].华侨大学学报(自然科学版),2014,35(4):373.[doi:10.11830/ISSN.1000-5013.2014.04.0373]
 MO Xiao-qin,LI Zhong-shen.Prediction Method of the Chaotic Time Series Using Least Squares Support Vector Machine[J].Journal of Huaqiao University(Natural Science),2014,35(4):373.[doi:10.11830/ISSN.1000-5013.2014.04.0373]
[7]冉茂宇.非出水时段电热水器加热时间与能耗的预测模型[J].华侨大学学报(自然科学版),2016,37(2):247.[doi:10.11830/ISSN.1000-5013.2016.02.0247]
 RAN Maoyu.Prediction Model of the Heating Time and Energy Consumption of Electric Water Heater During the Un-Draining Period[J].Journal of Huaqiao University(Natural Science),2016,37(4):247.[doi:10.11830/ISSN.1000-5013.2016.02.0247]
[8]冉茂宇.不同出水方式下电热水器出水时间与出水量的预测模型[J].华侨大学学报(自然科学版),2016,37(4):451.[doi:10.11830/ISSN.1000-5013.201604012]
 RAN Maoyu.Prediction Model of Water Draining Time and Volume for Electric Water Heater in Different Water Draining Modes[J].Journal of Huaqiao University(Natural Science),2016,37(4):451.[doi:10.11830/ISSN.1000-5013.201604012]
[9]余路.电信客户流失的组合预测模型[J].华侨大学学报(自然科学版),2016,37(5):637.[doi:10.11830/ISSN.1000-5013.201605022]
 YU Lu.Combination Forecasting Model of Customer Churns in Telecom Industry[J].Journal of Huaqiao University(Natural Science),2016,37(4):637.[doi:10.11830/ISSN.1000-5013.201605022]
[10]卢毅敏,张红.结合时间序列分解和神经网络的河流溶解氧预测[J].华侨大学学报(自然科学版),2020,41(5):659.[doi:10.11830/ISSN.1000-5013.202001027]
 LU Yimin,ZHANG Hong.Prediction of River Dissolved Oxygen Combined Times Series Decomposition and Neural Network[J].Journal of Huaqiao University(Natural Science),2020,41(4):659.[doi:10.11830/ISSN.1000-5013.202001027]
[11]刘婧,叶青.采用BP和RBF神经网络的厦门市工程造价预测模型[J].华侨大学学报(自然科学版),2013,34(5):576.[doi:10.11830/ISSN.1000-5013.2013.05.0576]
 LIU Jing,YE Qing.Project Cost Prediction Model Based on BP and RBP Neural Networks in Xiamen City[J].Journal of Huaqiao University(Natural Science),2013,34(4):576.[doi:10.11830/ISSN.1000-5013.2013.05.0576]

备注/Memo

备注/Memo:
收稿日期: 2011-11-09
通信作者: 叶青(1968-),女,教授,主要从事工程造价和房地产价格评估的研究.E-mail:yeqing@hqu.edu.cn.
基金项目: 中央高校基本科研业务费专项资金资助项目(JB-ZR1162); 福建省泉州市科技计划项目(2009Z52); 华侨大学高层次人才科研启动项目(12BS131)
更新日期/Last Update: 2012-07-20