参考文献/References:
[1] MOODY J,DARKEN C.Learning with localized receptive fields[C]//Proc Connectionist Models Summer School.San Mateo:Morgan Kaufmann,1998:133-143.
[2] MOODY J,DARKEN C.Fast learning in networks of locally-luned processing units[J].Neural Computation,1989,1(2):281-294.
[3] 叶青,王全凤.基于BP神经网络的工程估价模型及其应用[J].厦门大学学报:自然科学版,2008,47(6):47-51.
[4] 张新红,雷素娟.用QCEA优化的RBF神经网络及其在股市预测的应用[J].华侨大学大学学报:自然科学版,2011,32(3):338-342.
[5] CHEN Tian-ping,CHEN Hong.Approximation theory capability to functions of several variables, nonlinear functions, and operators by radial basis functional neural networks[J].IEEE Trans on Neural Networks,1995,6(4):904-910.
[6] 田景文,高美娟.人工神经网络算法研究及应用[M].北京:北京理工大学出版社,2006.
[7] 段晓牧.基于RBF神经网络的非确定性工程投资估算新方法的研究[D].阜新:辽宁工程技术大学,2003.
相似文献/References:
[1]汪帆.自然通风建筑室内热状况预测模型[J].华侨大学学报(自然科学版),1991,12(2):182.[doi:10.11830/ISSN.1000-5013.1991.02.0182]
Wang Fan.An Indoor Thermal Characteristics Prediction Model for the Use of Naturally Ventilated Building[J].Journal of Huaqiao University(Natural Science),1991,12(4):182.[doi:10.11830/ISSN.1000-5013.1991.02.0182]
[2]卫海燕.深圳市境外游客市场的动态预测模型分析[J].华侨大学学报(自然科学版),1999,20(3):326.[doi:10.11830/ISSN.1000-5013.1999.03.0326]
Wei Haiyan.A Dynamic Prediction Model for Analysing the Market of Overseas Tourists in Shenzhen City[J].Journal of Huaqiao University(Natural Science),1999,20(4):326.[doi:10.11830/ISSN.1000-5013.1999.03.0326]
[3]李浩,施养杭.混凝土碳化深度预测模型的比对与分析[J].华侨大学学报(自然科学版),2007,28(2):192.[doi:10.3969/j.issn.1000-5013.2007.02.021]
LI Hao,SHI Yang-hang.Discussion of Concrete Carbonation Depth Predictive Models[J].Journal of Huaqiao University(Natural Science),2007,28(4):192.[doi:10.3969/j.issn.1000-5013.2007.02.021]
[4]施养杭,李浩.混凝土结构碳化寿命可靠度分析[J].华侨大学学报(自然科学版),2008,29(4):600.[doi:10.11830/ISSN.1000-5013.2008.04.0600]
SHI Yang-hang,LI Hao.Reliability Analysis on Life of Carbonized Concrete Structure[J].Journal of Huaqiao University(Natural Science),2008,29(4):600.[doi:10.11830/ISSN.1000-5013.2008.04.0600]
[5]莫小琴,李钟慎.混沌时间序列的LSSVM预测方法[J].华侨大学学报(自然科学版),2015,36(预先出版):0.
MO Xiao-qin,LI Zhong-shen.Prediction Method of the Chaotic Time Series Using Least Squares Support Vector Machine[J].Journal of Huaqiao University(Natural Science),2015,36(4):0.
[6]莫小琴,李钟慎.混沌时间序列的LSSVM预测方法[J].华侨大学学报(自然科学版),2014,35(4):373.[doi:10.11830/ISSN.1000-5013.2014.04.0373]
MO Xiao-qin,LI Zhong-shen.Prediction Method of the Chaotic Time Series Using Least Squares Support Vector Machine[J].Journal of Huaqiao University(Natural Science),2014,35(4):373.[doi:10.11830/ISSN.1000-5013.2014.04.0373]
[7]冉茂宇.非出水时段电热水器加热时间与能耗的预测模型[J].华侨大学学报(自然科学版),2016,37(2):247.[doi:10.11830/ISSN.1000-5013.2016.02.0247]
RAN Maoyu.Prediction Model of the Heating Time and Energy Consumption of Electric Water Heater During the Un-Draining Period[J].Journal of Huaqiao University(Natural Science),2016,37(4):247.[doi:10.11830/ISSN.1000-5013.2016.02.0247]
[8]冉茂宇.不同出水方式下电热水器出水时间与出水量的预测模型[J].华侨大学学报(自然科学版),2016,37(4):451.[doi:10.11830/ISSN.1000-5013.201604012]
RAN Maoyu.Prediction Model of Water Draining Time and Volume for Electric Water Heater in Different Water Draining Modes[J].Journal of Huaqiao University(Natural Science),2016,37(4):451.[doi:10.11830/ISSN.1000-5013.201604012]
[9]余路.电信客户流失的组合预测模型[J].华侨大学学报(自然科学版),2016,37(5):637.[doi:10.11830/ISSN.1000-5013.201605022]
YU Lu.Combination Forecasting Model of Customer Churns in Telecom Industry[J].Journal of Huaqiao University(Natural Science),2016,37(4):637.[doi:10.11830/ISSN.1000-5013.201605022]
[10]卢毅敏,张红.结合时间序列分解和神经网络的河流溶解氧预测[J].华侨大学学报(自然科学版),2020,41(5):659.[doi:10.11830/ISSN.1000-5013.202001027]
LU Yimin,ZHANG Hong.Prediction of River Dissolved Oxygen Combined Times Series Decomposition and Neural Network[J].Journal of Huaqiao University(Natural Science),2020,41(4):659.[doi:10.11830/ISSN.1000-5013.202001027]
[11]刘婧,叶青.采用BP和RBF神经网络的厦门市工程造价预测模型[J].华侨大学学报(自然科学版),2013,34(5):576.[doi:10.11830/ISSN.1000-5013.2013.05.0576]
LIU Jing,YE Qing.Project Cost Prediction Model Based on BP and RBP Neural Networks in Xiamen City[J].Journal of Huaqiao University(Natural Science),2013,34(4):576.[doi:10.11830/ISSN.1000-5013.2013.05.0576]