[1]陈春春,胡日东.基于半参数LM-ARMAX模型的股价波动成因分析[J].华侨大学学报(自然科学版),2012,33(3):330-336.[doi:10.11830/ISSN.1000-5013.2012.03.0330]
 CHEN Chun-chun,HU Ri-dong.Stock Price Volatility Analysis Based on Semi-Parametric LM-ARMAX Model[J].Journal of Huaqiao University(Natural Science),2012,33(3):330-336.[doi:10.11830/ISSN.1000-5013.2012.03.0330]
点击复制

基于半参数LM-ARMAX模型的股价波动成因分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第33卷
期数:
2012年第3期
页码:
330-336
栏目:
出版日期:
2012-05-20

文章信息/Info

Title:
Stock Price Volatility Analysis Based on Semi-Parametric LM-ARMAX Model
文章编号:
1000-5013(2012)03-0330-07
作者:
陈春春胡日东
华侨大学经济与金融学院
Author(s):
CHEN Chun-chun HU Ri-dong
College of Economics and Finance, Huaqiao University, Quanzhou 362021, China
关键词:
股票价格 LM-ARMAX模型 波动率 半参数估计 非线性
Keywords:
stock prices LM-ARMAX model volatility semi-parametric estimation nonlinear
分类号:
F832.51; O212.7
DOI:
10.11830/ISSN.1000-5013.2012.03.0330
文献标志码:
A
摘要:
选择沪市1991-2010年所有上市公司的数据,建立LM-ARMAX模型来实证股票价格波动的决定因素; 然后,根据模型半参数估计的结果,进行基于半参数估计的广义似然比检验和基于Wild Bootstrap的Smirnov检验.研究结果表明:市帐率和成交量是股票价格波动的主要因素,而净资产收益率对股票价格波动的影响不显著; 相比起"指数研究"和"样本替代研究"而言,实证的数据精确度更高,说服力更强.
Abstract:
We selected all listed companies data of 1991-2010 in Shanghai stock exchange,established long memory-autoregressive moving average with exogenous variables(LM-ARMAX) model to study the determining factors of stock price volatility,and then,had a generalized likelihood ratio test based on the semi-parametric estimation and Smirnov test based on Wild Bootstrap according to the results of semi-parametric estimation of the model.The results show that the major factors of the stock price volatility are the book ratio and the volume,not the income ratio of net assets; compared to "index research" and "sample alternative research",the empirical data is more accurate and more convincing.

参考文献/References:

[1] 郝军红, 高丽峰, 李平. 上海证券市场股票价格波动的因素分析 [J]. 沈阳工业大学学报, 2007(3):355-360.doi:10.3969/j.issn.1000-1646.2007.03.027.
[2] VUOLTEENAHO T. What drives firm-level stock return [J]. Journal of Finance, 2002(1):233-264.doi:10.1111/1540-6261.00421.
[3] CORIS F. A Simple long memory model of realized volatility [J]. Social Science Research Network, 2004(1):174-196.
[4] P(A)STPR L, VERONESI P. Stock valuation and learning about profitability [J]. Journal of Finance, 2003(5):1749-1790.
[5] CAO C, SIMIN T, ZHAO J. Can growth options explain the trend in idiosyncratic risk [J]. Review of Financial Studies, 2008(6):2599-2633.
[6] SCHWERT G W. Stock volatility in the new millennium:How wacky is NASDAQ [J]. Journal of Monetary Economics, 2002(1):3-26.
[7] WEI S X, ZHANG C. Why did individual stocks become more volatile [J]. Journal of Business, 2006(1):259-292.
[8] GEWEKE J, PORTER-HUDAK S. The estimation and application of long memory time series models [J]. Journal of Time Series Analysis, 1983(4):221-238.
[9] ROBINSON P M. Gaussian semiparametric estimation of long range dependenee [J]. Annals of Statistics, 1995(5):1630-1661.doi:10.1214/aos/1176324317.
[10] ANDREWS D W K, GUGGENBERGER P. A bias-reduced log-periodogram regression esti-mator for the longmemory parameter [J]. Econometrica, 2003(2):675-712.doi:10.1111/1468-0262.00420.
[11] HURVICH C M, TSAI C L. Regression and time series model selection in small samples [J]. Biometrical Journal, 1989(2):297-307.doi:10.1093/biomet/76.2.297.
[12] SIMONOFF J S. Nonparametric regression using an improved akaike information criterion [J]. Journal of Statist, 2006.271-293.
[13] HART J D. Nonparametric smoothing and lack-of-fit tests [M]. New York:springer-verlag, 1997.
[14] FAN Jian-qing, HUANG Tao. Profile likelihood inferences on semiparametric varying-coefficient partially linear models [J]. BERNOULLI, 2005(6):1031-1057.doi:10.3150/bj/1137421639.
[15] KREISS J P, NEUMANN M, YAO Qi-wei. Bootstrap tests for simple structures in nonparametric time series regression [J]. Statistics and its Interface, 2008(2):367-380.
[16] ANDERSEN T G, BOLLERSLEV T, DIEBOLD F X. Exchange rate returns standardized by realized volatility are (nearly) Gaussian [J]. Multinational Finance Journal, 2000, (3/4):155-157.
[17] BARNDOFF-NIELSEN O E, SHEPHARD N. Power and bipower variation with stochastic volatility and jumps [J]. Journal of Financial Economics, 2004(1):1-37.
[18] 李胜歌, 张世英. "已实现"双幂次变差与多幂次变差的有效性分析 [J]. 系统工程学报, 2007(3):280-286.doi:10.3969/j.issn.1000-5781.2007.03.009.
[19] 李明, 赵煊. 证券市场的长记忆特征比较研究 [J]. 西部金融, 2010(7):17-18.
[20] 王相宁, 邹佳. 可加模型及其在金融市场波动率估计中的应用 [J]. 系统管理学报, 2009(1):82-88.
[21] 苏梽芳, 胡日东, 陈家干. 中国股市长记忆检验的滑动分块自助法仿真 [J]. 华侨大学学报(自然科学版), 2009(3):338-342.

备注/Memo

备注/Memo:
国家软科学计划项目(2008GXS5D130); 教育部科学技术研究重点基金资助项目(209148)
更新日期/Last Update: 2014-03-23