[1]卢静婵,王明元,姜攀,等.菌根共生体中植物信号物质的产生及其作用机制[J].华侨大学学报(自然科学版),2012,33(3):290-295.[doi:10.11830/ISSN.1000-5013.2012.03.0290]
 LU Jing-chan,WANG Ming-yuan,JIANG Pan,et al.Functioning Mechanism of Plant Signal Substances Generated in Mycorrhizal Symbionts[J].Journal of Huaqiao University(Natural Science),2012,33(3):290-295.[doi:10.11830/ISSN.1000-5013.2012.03.0290]
点击复制

菌根共生体中植物信号物质的产生及其作用机制()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第33卷
期数:
2012年第3期
页码:
290-295
栏目:
出版日期:
2012-05-20

文章信息/Info

Title:
Functioning Mechanism of Plant Signal Substances Generated in Mycorrhizal Symbionts
文章编号:
1000-5013(2012)03-0290-06
作者:
卢静婵王明元姜攀曾理
华侨大学化工学院
Author(s):
LU Jing-chan WANG Ming-yuan JIANG Pan ZENG Li
College of Chemical Engineering, Huaqiao Univeisity, Xiamen 361021, China
关键词:
丛枝菌根真菌 信号物质 营养交换 防御应答
Keywords:
arbuscular mycorrhizal fungi signal substances nutrient exchanges defense response
分类号:
Q948.122.2
DOI:
10.11830/ISSN.1000-5013.2012.03.0290
文献标志码:
A
摘要:
菌根是丛枝菌根真菌与宿主植物形成的互利共生体,在共生的不同阶段,植物产生一系列的信号物质如独脚金内酯、溶血磷脂酰胆碱、茉莉酸和水杨酸等.这些信号物质在植物与丛枝菌根真菌间相互识别、菌根形成、营养物质交换,以及植物防御反应诱导等方面发挥重要作用.文中探讨植物信号物质在丛枝菌根共生系统形成前后和病原体侵害的3个阶段可能的生理效应和作用机制,旨在为研究丛枝菌根真菌与植物信号物质的相互作用及其在农业生产和环境保护方面的应用提供依据.
Abstract:
Arbuscular mycorrhizals is a kind of mutulistic symbiosis which formed by plants and arbuscular mycorrhizal(AM) fungi.Signal substances such as strigolactones,jasmine acids(JA),salicylic acids(SA) and lyso-phosphatidylcholine(LPC),are found in different symbiotic stages.The signal substances play an important role not only in the recognization,mycorrhiza formation and nutrient exchanges between AM fungi and host plant,but also in the induction of plant defense response.In the present study,we summarized the physiological effects and related functioning mechanism of the signals on three stages: before AM formation,after AM formation and upon pathogens attack,for the purpose of providing a basis for the further study of interaction between AM fungi and signals,as well as the mycorrhizal application in agricultural production and environmental protection.

参考文献/References:

[1] REMY W, TAYLOR T N, HAS H. Four hundred-million-year-old vesicular arbuscular mycorrhizae [J]. Proceedings of the National Academy of Sciences(USA), 1994, (25):11841-11843.doi:10.1073/pnas.91.25.11841.
[2] SMITH S E, READ D J. Mycorrhizal symbiosis [M]. San Diego:academic Press, 1997.
[3] BAIS H P, WEIR T L, PERRYL G. The role of root exudates in rhizosphere interactions with plants and other organisms [J]. Annual Review of Plant Biology, 2006():233-266.doi:10.1146/annurev.arplant.57.032905.105159.
[4] GIOVANETTI M, SBRANA C, AVIO L. Differential hyphal morphogenesis in arbuscu[ar mycorrhizal fungi during pre-infection stages [J]. New Phytologist, 1993(3):587-593.doi:10.1111/j.1469-8137.1993.tb03907.x.
[5] 胡江, 孙淑斌, 徐国华. 植物中丛枝菌根形成的信号途径研究进展 [J]. 植物学通报, 2007(6):703-713.doi:10.3969/j.issn.1674-3466.2007.06.003.
[6] 朱先灿, 宋凤斌. 丛枝菌根共生的信号转导及其相关基因 [J]. 生命科学研究, 2008(2):95-99.
[7] BUEE M, ROSSIGNOL M, JAUNEAU A. The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates [J]. Molecular Plant-Microbe Interactions, 2000(6):693-698.doi:10.1094/MPMI.2000.13.6.693.
[8] B(E)CARD G, TAYLOR L P, DOUDS D D. Flavonoids are not necessary plant signals in arbuscular mycorrhizal symbiosis [J]. Molecular Plant-Microbe Interactions, 1995(2):252-258.
[9] AKIYAMA K, MATSUZAKI K, HAYASHI H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi [J]. Nature, 2005, (7043):824-827.
[10] MATUSOVA R, RANI K, VERSTAPPEN F W A. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp.are derived from the carotenoid pathway [J]. Plant Physiology, 2005(2):920-934.doi:10.1104/pp.105.061382.
[11] GOMEZ-ROLDAN V, ROUX C, GIRARD D. Strigolactones:Promising plant signals [J]. Plant Signaling & Behavior, 2007(3):163-165.
[12] LLANE A, GARCIA-GARRIDO J M, SAMPEDRO I. Strigolactones seem not to be involved in the nonsusceptibilty of arbuscular mycorrhizal (AM) nonhost plants to AM fungi [J]. Botany-Botanique, 2011(4):285-288.
[13] BESSERER A, PUECH-PAGES V, KIEFER P. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria [J]. Plos Biology, 2006(7):1239-1247.doi:10.1371/journal.pbio.0040226.
[14] BOUWMEESTER H J, ROUX C, L(O)PEZ-R(A)EZ J A. Rhizosphere communication of plants, parasitic plants and AM fungi [J]. Trends in Plant Science, 2007(5):224-230.doi:10.1016/j.tplants.2007.03.009.
[15] LOPEZ-RAEZ J A, CHARNIKHOVA T, FERNANDEZ I, el al. Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato [J]. Journal of Plant Physiology, 2011(3):294-297.doi:10.1016/j.jplph.2010.08.011.
[16] GARCIA-GARRIDO J M, LENDZEMO V, CASTELLANOS-MORALES V. Strigolactones, signals for parasitic plants and arbuscular mycorrhizal fungi [J]. Mycorrhiza, 2009(7):449-459.doi:10.1007/s00572-009-0265-y.
[17] HARRISON M J. Signaling in the arbuscular mycorrhizal symbiosis [J]. Annual Review of Microbiology, 2005():19-42.doi:10.1146/annurev.micro.58.030603.123749.
[18] HAUSE B, FESTER T. Molecular and cell biology of arbuacularmycorrhizal symbiosis [J]. Plants, 2005(2):184-196.
[19] SMITH S E, SMITH F A, JAKOBSEN I. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses [J]. Plant Physiology, 2003(1):16-20.
[20] RAUSCH C, DARAM P, BRUNNER S. A phosphate transporter expressed in arbuscule-containing cells in potato [J]. Nature, 2001, (6862):462-466.doi:10.1038/35106601.
[21] NAGY R, KARANDASHOV V, CHAGUE V. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species [J]. Plant Journal, 2005(2):236-250.doi:10.1111/j.1365-313X.2005.02364.x.
[22] DRISSNER D, KUNZE G, CALLEWAERT N. Lyso-phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis [J]. Science, 2007, (5848):265-268.doi:10.1126/science.1146487.
[23] NAGY R, DRISSNER D, AMRHEIN N. Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated [J]. New Phytologist, 2009(4):950-959.doi:10.1111/j.1469-8137.2008.02721.x.
[24] BUCHER M, WEGMUELLER S, DRISSNER D. Chasing the structures of small molecules in arbuscular mycorrhizal signaling [J]. Current Opinion in Plant Biology, 2009(4):500-507.doi:10.1016/j.pbi.2009.06.001.
[25] MUNNIK T. Phosphatidic acid:An emerging plant lipid second messenger [J]. Trends in Plant Science, 2001(5):227-233.doi:10.1016/S1360-1385(01)01918-5.
[26] VIEHWEGER K, SCHWARTZE W, SCHUMANN B. The G alpha protein controls a pH-dependent signal path to the induction of phytoalexin biosynthesis in eschscholzia californica [J]. Plant Cell, 2006(6):1510-1523.
[27] GUTJAHR C, BANBA M, CROSET V. Arbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway [J]. Plant Cell, 2008, (11):2989-3005.
[28] KHAN M H, MEGHVANSI M K, VIPIN P. Arbuscular mycorrhizal fungi-induced signaling in plant defence against phytopathogens [J]. Journal of Phytology, 2010(7):53-69.
[29] DEVOTO A, TURNER J G. Jasmomte-regulated Arabidopsis stress signalling network [J]. Physiologia Plantarum, 2005(2):161-172.doi:10.1111/j.1399-3054.2004.00418.x.
[30] LORENZO O, SOLANO R. Molecular players regulating the jasmonate signalling network [J]. Current Opinion in Plant Biology, 2005(5):532-540.
[31] HOHNJEC N, VIEWEG M F, P(U)HLER A. Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza [J]. Plant Physiology, 2005(4):1283-1301.doi:10.1104/pp.104.056572.
[32] KAPOOR R. Induced resistance in mycorrhizal tomato is correlated to concentration of jasmonic acid [J]. Online Journal of Biological Sciences, 2008(3):49-56.doi:10.3844/ojbsci.2008.49.56.
[33] COPETTA A, LINGUA G, BERTA G. Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L.var.Genovese [J]. Mycorrhiza, 2006(7):485-494.doi:10.1007/s00572-006-0065-6.
[34] KAPOOR R, CHAUDHARY V, BHATNAGAR A K. Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L [J]. Mycorrhiza, 2006(7):581-587.
[35] TRAW M B, DAWSON T E. Differential induction of trichomes by three herbivores of black mustard [J]. Oecologia, 2002(4):526-532.doi:10.1007/s00442-002-0924-6.
[36] TRAW M B, KIM J, ENRIGHT S. Negative cross-talk between salicylate and jasmonate-mediated pathways in the wassilewskija ccotype of arabidopsis thaliana [J]. Molecular Ecology, 2003(5):1125-1135.doi:10.1046/j.1365-294X.2003.01815.x.
[37] HAMIDUZZAMAN M M, JAKAB G, BARNAVON L. Beta-aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling [J]. Molecular Plant-Microbe Interactions, 2005(8):819-829.doi:10.1094/MPMI-18-0819.
[38] CORDIER C, POZO M J, BAREA J M. Cell defense responses associated with localized and systemic resistance to phytophthora induced in tomato by an arbuscular mycorrhizal fungus [J]. Molecular Plant-Microbe Interactions, 1998(9):1017-1028.
[39] LOAKE G, GRANT M. Salicylic acid in plant defence-the players and protagonists [J]. Current Opinion in Plant Biology, 2007(5):466-472.
[40] MALAMY J, HENNING J, KLESSIG D E. Temperature depended induction of salicylic acid and its conjugated during the resistance responses to tobacco mosaic virus infection [J]. Plant Cell, 1992(3):359-365.
[41] EL-KHALLAL S M. Induction and modulation of resistance in tomato plants against Fusarium wilt disease by bioagent fungi (arbuscular mycorrhiza) and/or hormonal elicitors (jasmonic acid & salicylic acid):1-changes in growth, some metabolic activities and endogenous hormones re-lated to defence mechanism [J]. Australian Journal of Basic and Applied Sciences, 2007(4):691-705.
[42] MEDINA M J H, GAGNON H, PICHE Y. Root colonization by arbuscular mycorrhizal fungi is affected by the sali-cylic acid content of the plant [J]. Plant Science, 2003(6):993-998.
[43] BLILOU I, OCAMPO J A, GARCiA-GARRIDO J M. Induction of Ltp (lipid transfer protein) and Pal (phenylalanine ammonia-lyase) gene expression in rice roots colonized by the arbuscular mycorrrhizal fungus Glomus mosseae [J]. Journal of Experimental Botany, 2000.1969-1977.doi:10.1093/jexbot/51.353.1969.
[44] POZO M J, AZCON-AGUILAR C. Unraveling mycorrhiza-induced resistance [J]. Current Opinion in Plant, 2007(4):393-398.
[45] POZO M J, VAN LOON L C, PIETERSE C M J. Jasmonates-signals in plant-microbe interactions [J]. Journal of Plant Growth Regulation, 2004(3):211-222.
[46] GUTJAHR C, PASZKOWSKI U. Jasmonic acid and salicylic acid signaling in root-biotroph interactions [J]. Molecular Plant-Microbe Interactions, 2009(7):763-772.doi:10.1094/MPMI-22-7-0763.
[47] CAMPOS-SORIANO L, SEGUNDO B S. New insights into the signaling pathways controlling defense gene expression in rice roots during the arbuscular mycorrhizal symbiosis [J]. Plant Signaling & Behavior, 2011(4):553-557.doi:10.4161/psb.6.4.14914.

相似文献/References:

[1]王晓琴.丛枝菌根真菌的增殖技术[J].华侨大学学报(自然科学版),2004,25(3):301.[doi:10.3969/j.issn.1000-5013.2004.03.019]
 Wang Xiaoqin.Propagation Technology of AMF[J].Journal of Huaqiao University(Natural Science),2004,25(3):301.[doi:10.3969/j.issn.1000-5013.2004.03.019]
[2]王晓琴.丛枝菌根真菌的增殖技术比较分析[J].华侨大学学报(自然科学版),2005,26(3):259.[doi:10.3969/j.issn.1000-5013.2005.03.009]
 Wang Xiaoqin.Comparing the Propagation Technologies of Arbuscular mycorrhizal Fungi[J].Journal of Huaqiao University(Natural Science),2005,26(3):259.[doi:10.3969/j.issn.1000-5013.2005.03.009]

备注/Memo

备注/Memo:
国家自然科学基金资助项目(31101512); 福建省自然科学基金资助项目(2011J01222); 华侨大学基本科研业务费专项科研基金资助项目(JB-ZR1149)
更新日期/Last Update: 2014-03-23