[1]林俊义,黄常标,刘斌,等.双目立体视觉摄像机标定及精度分析[J].华侨大学学报(自然科学版),2011,32(4):364-367.[doi:10.11830/ISSN.1000-5013.2011.04.0364]
 LIN Jun-yi,HUANG Chang-biao,LIU Bin,et al.Camera Calibration and Accuracy Analysis of Stereo Vision[J].Journal of Huaqiao University(Natural Science),2011,32(4):364-367.[doi:10.11830/ISSN.1000-5013.2011.04.0364]
点击复制

双目立体视觉摄像机标定及精度分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第32卷
期数:
2011年第4期
页码:
364-367
栏目:
出版日期:
2011-07-20

文章信息/Info

Title:
Camera Calibration and Accuracy Analysis of Stereo Vision
文章编号:
1000-5013(2011)04-0364-04
作者:
林俊义黄常标刘斌江开勇
华侨大学机电及自动化学院
Author(s):
LIN Jun-yi HUANG Chang-biao LIU Bin JIANG Kai-yong
College of Mechanical Engineering and Automation, Huaqiao University, Quanzhou 362021, China
关键词:
双目立体视觉 张氏标定算法 OpenCV 精度分析
Keywords:
stereo vision Zhang′s camera calibration OpenCV accuracy analysis
分类号:
TP391.41
DOI:
10.11830/ISSN.1000-5013.2011.04.0364
文献标志码:
A
摘要:
以VC++为开发平台,采用开源的OpenCV函数库实现张氏标定算法; 以标定板上的角点为测量对象,进行双目立体视觉系统的三维数据测量.采用标定获得的摄像机参数对模板图像进行校正,使用Harris算子进行角点提取,并对各行各列角点进行最小二乘直线拟合,以其交点为最终的角点位置,最后进行角点匹配与反求.测量结果的精度分析表明:该方法具有较高的测量精度,符合实际的测量要求.
Abstract:
The Zhang′s camera cailibration method is realized by using the OpenCV function library on the VC++ platform.The corners of the calibration planar are measured by the stereo vision to get 3D data.The camera calibration parameters are used to rectify the image of the planar pattern.The Harris corner extraction algorithm is used,and the linear least-squares method is applied to every row and column,the intersection points of these lines are taken as the final corners positon.The corresponding corner matching and 3D reversing algorithm are used to get the real points.The precision analysis indicates that the method has high measuring precision and meets the real measuring requirements.

参考文献/References:

[1] 李中伟, 王从军, 史玉升. 3D测量系统中的高精度摄像机标定算法 [J]. 光电工程, 2008(4):58-63.doi:10.3969/j.issn.1003-501X.2008.04.012.
[2] ZHANG Zheng-you. A flexible new technique for camera calibration [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, (11):1330-1334.doi:10.1109/34.888718.
[3] SONG Li-mei, WANG Ming-ping, LU Lu. High precision camera calibration in vision measurement [J]. Optics & Laser Technology, 2007(7):1413-1420.doi:10.1016/j.optlastec.2006.10.006.
[4] TSAI R. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses [J]. International Journal of Robotics & Automation, 1987(4):323-344.
[5] 杨雪荣, 张湘伟, 成思源. 视觉测量中的相机标定方法进展研究 [J]. 机械设计与制造, 2009(3):259-261.doi:10.3969/j.issn.1001-3997.2009.03.101.
[6] 郭陆峰, 江开勇, 吴明忠. 一种新的非线性相机模型标定方法 [J]. 华侨大学学报(自然科学版), 2008(4):502-506.
[7] GAO Hong-wei, WU Cheng-dong, GAO Li-fu. An improved two-stage camera calibration method [A]. Dalian:IEEE, 2006.9514-9518.
[8] 田克微, 张爱武, 王少敏. 一种基于OpenCV的摄像机标定方法 [J]. 首都师范大学学报(自然科学版), 2008(2):14-16.doi:10.3969/j.issn.1004-9398.2008.02.004.
[9] 高文娟, 李健. 基于OpenCV的摄像机标定问题研究 [J]. 计算机与数字工程, 2008, (12):128-130.

备注/Memo

备注/Memo:
福建省科技计划重点项目(2008H0085); 国务院侨办科研基金资助项目(08QRZ01)
更新日期/Last Update: 2014-03-23