[1]田朝薇,宋海洲.一类带有混合约束的二次半定规划及其投影收缩算法[J].华侨大学学报(自然科学版),2011,32(1):113-117.[doi:10.11830/ISSN.1000-5013.2011.01.0113]
 TIAN Zhao-wei,SONG Hai-zhou.A Class of Quadratic Semi-Definite Programming with Mixed Constraints and Its Projection and Contraction Algorithm[J].Journal of Huaqiao University(Natural Science),2011,32(1):113-117.[doi:10.11830/ISSN.1000-5013.2011.01.0113]
点击复制

一类带有混合约束的二次半定规划及其投影收缩算法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第32卷
期数:
2011年第1期
页码:
113-117
栏目:
出版日期:
2011-01-20

文章信息/Info

Title:
A Class of Quadratic Semi-Definite Programming with Mixed Constraints and Its Projection and Contraction Algorithm
文章编号:
1000-5013(2011)01-0113-05
作者:
田朝薇宋海洲
华侨大学数学科学学院
Author(s):
TIAN Zhao-wei SONG Hai-zhou
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
二次半定规划 投影方程 变分不等式 投影收缩算法
Keywords:
quadratic semi-definite programming problem projection equation variational inequalities projection and contraction algorithms
分类号:
O221.2
DOI:
10.11830/ISSN.1000-5013.2011.01.0113
文献标志码:
A
摘要:
研究带有线性等式及线性不等式约束的二次半定规划问题.讨论对偶理论、最优性条件及其等价的单调变分不等式,给出相应的投影收缩算法.经收敛性分析,可得该算法是全局收敛的.
Abstract:
In this paper,we discuss a class of quadratic semi-definite programming problem with linear inequality constraints and linear inequality constraints.The duality theories are presented.After proving the equivalence of its optimality conditions and monotonous linear variational inequalities,we present its projection and contraction algorithm.It is proved that the algorithm is global convergence after analyzing its convergence.

参考文献/References:

[1] HEL MBERG C. Semidefinite programming for combinatorial optimization [M]. Berlin:Konrad-Zuse-Zentrum for Information Stechnik, 2000.
[2] HEL MBERG C. Semidefinite programming for combinatorial optimization [M]. Berlin:Konrad-Zuse-Zentrum for Information Stechnik, 2000.
[3] VANDENBERGHE L, BOYD S. Semi-definite programming [J]. SIAM Review, 1996, (1):49-95.
[4] VANDENBERGHE L, BOYD S. Semi-definite programming [J]. SIAM Review, 1996(1):49-95.
[5] ALIZADEH F. Interior point methods in semi-definite programming with application to combinatorial optimization [J]. SIAM J on Optim, 1995, (1):13-51.
[6] ALIZADEH F. Interior point methods in semi-definite programming with application to combinatorial optimization [J]. SIAM Journal on Optimization, 1995(1):13-51.
[7] 韩乔明. 解半定规划的二次摄动方法 [J]. 应用数学学报, 1999, (1):84-90.
[8] 韩乔明. 解半定规划的二次摄动方法 [J]. 应用数学学报, 1999(1):84-90.
[9] 关秀翠, 刁在筠. 二次半定规划问题及其投影收缩算法 [A]. 高等学校计算数学学报, 2002, (2):97-108.
[10] 关秀翠, 刁在筠. 二次半定规划问题及其投影收缩算法 [J]. 高等学校计算数学学报, 2002(2):97-108.doi:10.3969/j.issn.1000-081X.2002.02.001.
[11] HAN Q. Projection and contraction methods for semi-definite programming [J]. Applied Mathematics and Computation, 1998, (2/3):275-289.
[12] HAN Q. Projection and contraction methods for semi-definite programming [J]. Applied Mathematical Computer, 1998, (2/3):275-289.
[13] HARKER P T, PANG J S. Finite dimensional variational inequality and nonlinear complementary problems:A survey of theory algorithms and applications [J]. Mathematical Programming Journal, 1990, (1/2/3):161-220.
[14] HARKER P T, PANG J S. Finite dimensional variational inequality and nonlinear complementary problems:A survey of theory algorithms and applications [J]. Mathematical Programming Journal, 1990, (1/2/3):161-220.
[15] HE B. Solving a class of linear projection equations [J]. Numerische Mathematik, 1994(1):71-80.
[16] HE B. Solving a class of linear projection equations [J]. Numerische Mathematik, 1994, (1):71-80.
[17] HE B. A new method for a class of linear variational inequalities [J]. Mathematical Programming Journal, 1994(2):137-144.
[18] HE B. A new method for a class of linear variational inequalities [J]. Mathematical Programming Journal, 1994, (2):137-144.

备注/Memo

备注/Memo:
福建省自然科学基金资助项目(Z0511028)
更新日期/Last Update: 2014-03-23