[1]叶丽,谢明红.采用积累弦长法拟合3次NURBS曲线[J].华侨大学学报(自然科学版),2010,31(4):383-387.[doi:10.11830/ISSN.1000-5013.2010.04.0383]
 YE Li,XIE Ming-hong.Third-Order Non-Uniform Rational B-Spline Curve Fitting Based on Method of Accumulating Chord Length[J].Journal of Huaqiao University(Natural Science),2010,31(4):383-387.[doi:10.11830/ISSN.1000-5013.2010.04.0383]
点击复制

采用积累弦长法拟合3次NURBS曲线()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第31卷
期数:
2010年第4期
页码:
383-387
栏目:
出版日期:
2010-07-20

文章信息/Info

Title:
Third-Order Non-Uniform Rational B-Spline Curve Fitting Based on Method of Accumulating Chord Length
文章编号:
1000-5013(2010)04-0383-05
作者:
叶丽谢明红
华侨大学机电及自动化学院
Author(s):
YE Li XIE Ming-hong
College of Mechanical Engineering and Automation, Huaqiao University, Quanzhou 362021, China
关键词:
非均匀有理B样条 积累弦长 参数化 型值点 控制顶点 曲线拟合
Keywords:
non-uniform rational B-spline accumulating chord length parameterization data point control points curve fitting
分类号:
TB115
DOI:
10.11830/ISSN.1000-5013.2010.04.0383
文献标志码:
A
摘要:
根据已知的3次非均匀有理B样条(NURBS)曲线型值点,采用效果较好的积累弦长参数化方法构造节点矢量,从而得到B样条基; 利用带权控制顶点的矩阵计算出全部控制顶点,最后拟合出所要求的曲线.拟合结果表明,该方法可以反映数据点按弦长的分布情况,适用于构造任意次非均匀有理B样条曲线节点矢量参数的计算,较好地适合于工程实践的应用.
Abstract:
According to a given set of data points of the third-order non-uniform rational B-spline(NURBS) curve,the parametrization method of accumulating chord length which is more effective is used to construct the knot vectors to obtain the B-spline basis.All of the control points are calculated using the matrix of the control points with powers to fit the required curve finally.The final result reveals that data distribution according to the chord length can be shown by this method.This method can be used in parameter calculation during construction of the knot vector of any order NURBS curve,and can be better fit for engineering practice.

参考文献/References:

[1] 朱心雄. 自由曲线曲面造型技术 [M]. 北京:科学出版社, 2000.
[2] 施法中. 计算机辅助几何设计与非均匀有理B样条 [M]. 北京:高等教育出版社, 2001.
[3] BRADLEY C, VICKERS G W. Automated rapid prototyping utilizing laser scanning and free-form machining [J]. CIRP Annals, 1992(2):37-40.
[4] 吕丹, 童创明, 邓发升. 3次NURBS曲线控制点的计算 [J]. 弹箭与制导学报, 2006(4):357-359.doi:10.3969/j.issn.1673-9728.2006.04.111.
[5] ZHANG Ying-jie, LIU Shang-ning. Feature extraction from slice data for reverse engineering [J]. Frontiers of Mechanical Engineering, 2007(1):25-31.doi:10.1007/s11465-007-0004-z.
[6] 韩庆瑶, 赵保亚, 谭建鑫. NURBS曲线曲面重构的方法 [J]. 机械设计与制造, 2006(3):137-139.doi:10.3969/j.issn.1001-3997.2006.03.062.
[7] SHAMSUDDIN S M, AHMEDL M A, SAMIAN Y. NURBS skinning surface for ship hull design based on new parameterization method [J]. International Journal of Advanced Manufacturing Technology, 2006(9):936-941.
[8] YEH Syh-Shiuh, SU Hsin-Chuan. Implementation of online NURBS curve fitting process on CNC machines [J]. International Journal of Advanced Manufacturing Technology, 2009, (5/6):531-540.doi:10.1007/s00170-007-1361-9.

备注/Memo

备注/Memo:
福建省自然科学基金计划资助项目(E0640007)
更新日期/Last Update: 2014-03-23