[1]付海明,徐芳,晋瑞芳.褶型气溶胶过滤器过滤阻力与结构参数关系[J].华侨大学学报(自然科学版),2010,31(3):307-312.[doi:10.11830/ISSN.1000-5013.2010.03.0307]
 FU Hai-ming,XU Fang,JIN Rui-fang.Relationship of Filtration Resistance with Geometry Parameters Across Pleated Aerosol Filter[J].Journal of Huaqiao University(Natural Science),2010,31(3):307-312.[doi:10.11830/ISSN.1000-5013.2010.03.0307]
点击复制

褶型气溶胶过滤器过滤阻力与结构参数关系()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第31卷
期数:
2010年第3期
页码:
307-312
栏目:
出版日期:
2010-05-20

文章信息/Info

Title:
Relationship of Filtration Resistance with Geometry Parameters Across Pleated Aerosol Filter
文章编号:
1000-5013(2010)03-0307-06
作者:
付海明徐芳晋瑞芳
东华大学环境科学与工程学院
Author(s):
FU Hai-ming XU Fang JIN Rui-fang
College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
关键词:
过滤器 气溶胶 过滤阻力 褶型结构 Navier-Stokes方程
Keywords:
filter aerosol filtration resistance pleated type structure Navier-Stokes equation
分类号:
X505
DOI:
10.11830/ISSN.1000-5013.2010.03.0307
文献标志码:
A
摘要:
对褶型气溶胶过滤器过滤阻力进行理论计算及实验测试.在对速度函数假设的基础上,对Navier-Stokes方程进行压力求解.采用缝隙宽度上压力平均值的概念,提出一个用于求解褶型过滤器过滤阻力的方法,得出褶型气溶胶过滤器过滤阻力的解析解,理论计算结果与实验测试基本吻合.研究表明,减小褶距或增大褶高可增加过滤介质面积,减小过滤器介质过滤阻力; 但是,过滤器结构阻力也将增加,褶型气溶胶过滤器阻力与单位长度褶数存在最佳值.
Abstract:
The theoretical analysis and experiments about filtration resistance of pleated aerosol filter was carried out in this paper.Based on the assumption of the velocity function,the pressure was solved from the Navier-Stokes equation.With the averaged pressure across the local gap width,a model for the overall filtration resistance of pleated air filter and analytical solution was developed.The results of the theoretical calculation were agreed with the experimental results.Reducing the pleat distance or raising the pleat depth produces an increase in the filtration surface,which results an decrease in the medium filtration resistance and an increase in the geometry filtration resistance.There is a optimal pleat nunmber per unit length to make the theoretical filtration resistance minimum.

参考文献/References:

[1] 刘来红, 王世宏. 气溶胶过滤器的发展及应用 [J]. 过滤与分离, 2000(4):8-9.
[2] 蔡杰. 空气过滤ABC [M]. 北京:中国建筑工业出版社, 2002.
[3] TOBIAS L, HEINAZ F. The prediction of filtration performance of high efficiency gas filter elements [J]. Chemical engineering science, 1996(8):1199-1208.doi:10.1016/0009-2509(95)00366-5.
[4] FABBRO L D, LABORDE J C, MERLIN P. Air flows and pressure drop modelling for different pleated industrial filters [J]. Filtration and Separation, 2002.34-40.
[5] CAESAR T, SCHROTH T. The influence of pleat geometry on the pressure drop in deep-pleated cassette filters [J]. Filtration and Separation, 2002(1):49-54.
[6] NASSEHI V, HANSPAL N S, WAGHODE A N. Finite-element modelling of combined free/porous regimes:Simulation of flow through pleated cartrige filters [J]. Chemical Engineering Science, 2005(4):995-1006.doi:10.1016/j.ces.2004.09.073.
[7] 付海明. 尹峰褶型空气滤清器捕集效率及压力损失 [J]. 华侨大学学报(自然科学版), 2009(6):650-655.
[8] 冯朝阳, 张振中, 江锋. 核级高效气溶胶过滤器的结构与阻力关系的探讨 [J]. 环境科学学报, 2008(6):1041-1046.doi:10.3321/j.issn:0253-2468.2008.06.001.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(50578034); 上海市重点学科建设基金资助项目(B604)
更新日期/Last Update: 2014-03-23