[1]蒋雨燕,黄宜坚.调速阀故障诊断的AR双谱定阶方法比较[J].华侨大学学报(自然科学版),2009,30(2):123-126.[doi:10.11830/ISSN.1000-5013.2009.02.0123]
 JIANG Yu-yan,HUANG Yi-jian.Comparison of Different Methods of Determining the Order of Autoregressive Bi-Spectrum[J].Journal of Huaqiao University(Natural Science),2009,30(2):123-126.[doi:10.11830/ISSN.1000-5013.2009.02.0123]
点击复制

调速阀故障诊断的AR双谱定阶方法比较()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第30卷
期数:
2009年第2期
页码:
123-126
栏目:
出版日期:
2009-03-20

文章信息/Info

Title:
Comparison of Different Methods of Determining the Order of Autoregressive Bi-Spectrum
文章编号:
1000-5013(2009)02-0123-04
作者:
蒋雨燕黄宜坚
华侨大学机电及自动化学院
Author(s):
JIANG Yu-yan HUANG Yi-jian
College of Mechanical Engineering and Automation, Huaqiao University, Quanzhou 362021, China
关键词:
调速阀 故障诊断 自回归模型 时间序列双谱 定阶方法 奇异值分解
Keywords:
speed-regulating value fault diagnosis autoregressive model time series bi-spectrum method of determining the order singular value decomposition
分类号:
TH137.522
DOI:
10.11830/ISSN.1000-5013.2009.02.0123
文献标志码:
A
摘要:
为解决故障诊断中确定最优的自回归(AR)模型阶数的问题,运用最终预测误差(FPE)、阿凯克信息准则(AIC)、贝叶斯信息准则(BIC),以及奇异值分解(SVD)的切片法和Frobenius法共5种定阶方法对调速阀的故障进行自回归模型定阶实验.结果表明,FPE,AIC,BIC及SVD切片法确定的阶数较低,而用SVD Frobenius法确定的阶数较高.通过不同阶数、不同故障的调速阀故障诊断实验可知,用SVD Frobenius法建立的AR模型效果优于其他方法.
Abstract:
In order to determine the optimal order of autoregressive(AR) models,the 5 methods including final prediction error(FPE),Akaike’s information criterion(AIC),Bayesian information criterion(BIC),singular value decomposition(SVD) based Slicing,and Frobenius are used in the corresponding experiments for the faults of speed-regulating value. The results have revealed that the selected orders of the AR model using the FPE,AIC,BIC,SVD slicing methods are lower than that obtained using the SVD Frobenius method.It has been proven that the AR model obtained by the SVD Frobenius method is more efficient than those obtained using other methods under the different fault diagnosis experiments for speed-regulating value.

参考文献/References:

[1] AKAIKE H. Fitting autoregressive models for prediction [J]. Annals of the Institute of Statistical Mathematics, 1969.243-247.
[2] AKAIKE H. A new look at the statistical model identification [J]. IEEE Transactions on Automatic Control, 1974.716-723.
[3] SCHWARZ G. Estimating the dimension of a model [J]. Annals of Statistics, 1978.461-464.
[4] KANJILAL P P, PALIT S, SAHA G. Fetal ECG extraction from single-channel materal EGC using singular value decomposition [J]. IEEE Transactions, 1997(1):51-59.doi:10.1109/16.554791.
[5] 吴光霞. 时序模型定阶准则评述与改进 [J]. 西安矿业学院学报, 1995(4):308.
[6] 刘波, 文忠, 曾涯. MATLAB信号处理 [M]. 北京:电子工业出版社, 2006.298.
[7] 张贤达. 时间序列分析--高阶统计量方法 [M]. 北京:清华大学出版社, 1996.85.
[8] 李竹林, 张根耀, 赵宗涛. 奇异值特征在目标识别中的应用 [J]. 微电子学与计算机, 2004, (11):27.doi:10.3969/j.issn.1000-7180.2004.11.007.
[9] 刘少谦, 黄宜坚. 应用时间序列分析的液压溢流阀故障诊断法 [J]. 华侨大学学报(自然科学版), 2007(3):228-231.doi:10.3969/j.issn.1000-5013.2007.03.002.
[10] 赵永立, 杨建成, 张玉红. 基于Lab VIEW的虚拟振动测试分析系统 [J]. 天津工业大学学报, 2006(4):77-78.doi:10.3969/j.issn.1671-024X.2006.04.023.
[11] 钱阳, 周月平, 陈俊伟. 基于Lab VIEW的振动测试分析系统 [J]. 温州大学学报(自然科学版), 2005(4):58-59.doi:10.3875/j.issn.1674-3555.2005.04.012.
[12] SWAMI A, MENDEL M, NIKIAS C L. High-order spectral analysis toolbox user’s guide [M]. INC:The Mathworks, 1999.
[13] ZOLTAN A D, BAUMGAR D R. Applications of higher-order spectral analysis to detection and identification of seismic and acoustic signals generated by machinery [J]. Spie, 1997, (3081):99-109.

相似文献/References:

[1]冯远静,李良福,冯祖仁.粗糙集CMAC神经网络故障诊断策略[J].华侨大学学报(自然科学版),2004,25(3):318.[doi:10.3969/j.issn.1000-5013.2004.03.023]
 Feng Yuanjing,Li Liangfu,Feng Zuren.Rough Set-Based CMAC Neural Network for Fault Diagrosis[J].Journal of Huaqiao University(Natural Science),2004,25(2):318.[doi:10.3969/j.issn.1000-5013.2004.03.023]
[2]姚若苹,余尤好,陈培民,等.11相无刷励磁机故障工况的谐波分析[J].华侨大学学报(自然科学版),2007,28(2):127.[doi:10.3969/j.issn.1000-5013.2007.02.005]
 YAO Ruo-ping,YU You-hao,CHEN Pei-ming,et al.Harmonic Analysis of the Fault Cases in 11-Phase Brushless Exciter Based on FFT[J].Journal of Huaqiao University(Natural Science),2007,28(2):127.[doi:10.3969/j.issn.1000-5013.2007.02.005]
[3]刘少谦,黄宜坚.应用时间序列分析的液压溢流阀故障诊断法[J].华侨大学学报(自然科学版),2007,28(3):228.[doi:10.3969/j.issn.1000-5013.2007.03.002]
 LIU Shao-qian,HUANG Yi-jian.Fault Diagnosis of Hydraulic Relief Valve Using Time Series Analysis[J].Journal of Huaqiao University(Natural Science),2007,28(2):228.[doi:10.3969/j.issn.1000-5013.2007.03.002]
[4]蔡奇志,黄宜坚.三谱切片在调速阀故障诊断中的应用[J].华侨大学学报(自然科学版),2009,30(1):16.[doi:10.11830/ISSN.1000-5013.2009.01.0016]
 CAI Qi-zhi,HUANG Yi-jian.Fault Diagnosis of the Speed Control Valve Using the Slices of Trispectrum[J].Journal of Huaqiao University(Natural Science),2009,30(2):16.[doi:10.11830/ISSN.1000-5013.2009.01.0016]
[5]成琴,王启志.变压器油中溶解气体的智能诊断[J].华侨大学学报(自然科学版),2010,31(3):260.[doi:10.11830/ISSN.1000-5013.2010.03.0260]
 CHENG Qin,WANG Qi-zhi.Intelligent Diagnosis of Dissolved Gases in Transformer Oil[J].Journal of Huaqiao University(Natural Science),2010,31(2):260.[doi:10.11830/ISSN.1000-5013.2010.03.0260]
[6]曾小军,黄宜坚.利用AR模型和支持向量机的调速阀故障识别[J].华侨大学学报(自然科学版),2011,32(1):13.[doi:10.11830/ISSN.1000-5013.2011.01.0013]
 ZENG Xiao-jun,HUANG Yi-jian.Fault Recognition of Speed Control Valve Based on AR Model and Support Vector Machine[J].Journal of Huaqiao University(Natural Science),2011,32(2):13.[doi:10.11830/ISSN.1000-5013.2011.01.0013]
[7]王理停,黄宜坚.关联维数的超声波电机故障诊断[J].华侨大学学报(自然科学版),2011,32(4):368.[doi:10.11830/ISSN.1000-5013.2011.04.0368]
 WANG Li-ting,HUANG Yi-jian.Fault Diagnosis of Ultrasonic Motor Based on Correlation Dimension[J].Journal of Huaqiao University(Natural Science),2011,32(2):368.[doi:10.11830/ISSN.1000-5013.2011.04.0368]
[8]高宇,黄宜坚.采用关联维的溢流阀故障诊断[J].华侨大学学报(自然科学版),2012,33(3):241.[doi:10.11830/ISSN.1000-5013.2012.03.0241]
 GAO Yu,HUANG Yi-jian.Fault Diagnosis of Relief Valve by Using Correlation Dimension[J].Journal of Huaqiao University(Natural Science),2012,33(2):241.[doi:10.11830/ISSN.1000-5013.2012.03.0241]
[9]马洁,党爱民,李刚,等.基于MSPM的故障诊断技术研究现状与展望[J].华侨大学学报(自然科学版),2012,33(6):601.[doi:10.11830/ISSN.1000-5013.2012.06.0601]
 MA Jie,DANG Ai-min,LI Gang,et al.Research Status and Prospect of Fault Diagnosis Technology Based on MSPM[J].Journal of Huaqiao University(Natural Science),2012,33(2):601.[doi:10.11830/ISSN.1000-5013.2012.06.0601]
[10]张妮,田学民,蔡连芳.基于改进动态等距离映射的非线性动态故障诊断方法[J].华侨大学学报(自然科学版),2012,33(6):621.[doi:10.11830/ISSN.1000-5013.2012.06.0621]
 ZHANG Ni,TIAN Xue-min,CAI Lian-fang.Nonlinear Dynamic Fault Diagnosis Method Based on Improved Isometric Mapping[J].Journal of Huaqiao University(Natural Science),2012,33(2):621.[doi:10.11830/ISSN.1000-5013.2012.06.0621]

备注/Memo

备注/Memo:
福建省重点高新技术项目(2005H035); 福建省自然科学基金计划资助项目(A0610020)
更新日期/Last Update: 2014-03-23