[1]王海泉,陈国华.电场诱导粒子取向排列的研究进展[J].华侨大学学报(自然科学版),2008,29(4):490-494.[doi:10.11830/ISSN.1000-5013.2008.04.0490]
 WANG Hai-quan,CHEN Guo-hua.Review on the Orientation and Alignment of Particles Induced by Electric Field[J].Journal of Huaqiao University(Natural Science),2008,29(4):490-494.[doi:10.11830/ISSN.1000-5013.2008.04.0490]
点击复制

电场诱导粒子取向排列的研究进展()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第29卷
期数:
2008年第4期
页码:
490-494
栏目:
出版日期:
2008-10-20

文章信息/Info

Title:
Review on the Orientation and Alignment of Particles Induced by Electric Field
文章编号:
1000-5013(2008)04-0490-05
作者:
王海泉陈国华
华侨大学材料科学与工程学院
Author(s):
WANG Hai-quan CHEN Guo-hua
College of Material Science and Engineering, Huaqiao University, Quanzhou 362021, China
关键词:
电场 取向 排列 机理
Keywords:
electric filed orientation alignment mechanis
分类号:
TB33
DOI:
10.11830/ISSN.1000-5013.2008.04.0490
文献标志码:
A
摘要:
综述在电场作用下粒子取向排列的研究进展.探讨粒子填料在聚合物基体中取向排列后,制备的复合材料具有结构上的各向异性,从而使复合材料具有各向异性性能,如光学性能、机械性能、电学性能和热性能等.分析电场诱导取向排列的机理,以及在电场作用下,不同形状的粒子的运动机理.分析电场诱导取向排列的影响因素,认为粒子在电场作用下的取向排列,是电场极化作用与粒子的热运动竞争的过程.
Abstract:
As a driving field,the electric field plays an important role in designing materials.Under the inducement of the electric field,particles will be orientated and aligned to form ordered structure,resulting in materials with novel properties.This paper summarized the development of the studies on the orientation and alignment of particles induced by electric field.

参考文献/References:

[1] VENUGOPAL G, KRAUSE S, WNEK G E. Modification of polymer blend morphology using electric fields [J]. Journal of Polymer Science, 1989, (12):497-501.
[2] CHEN Y, SPRECHER A F, CONRAD H. Electrostatic particle-particle interactions in electrorheological fluids [J]. Journal of Applied Physics, 1991, (11):6796-6803.doi:10.1063/1.349855.
[3] HILL J C, VAN STEENKISTE T H. Response times of electrorheological fluids [J]. Journal of Applied Physics, 1991(3):1207-1211.
[4] CHEN T Y, BRISCOE B J, LUCKHAM P F. Microstructural studies of electro-rheological fluids under shear [J]. Journal of the Chemical Society, Faraday Transactions, 1995, (12):1787-1794.
[5] BONNECAZE R T, BRADY J F. Dynamic simulation of an electrorheological fluid [J]. Journal of Chemical Physics, 1992.2183-2202.
[6] MELROSE J R. Simulations of electrorheological and particle mixture suspensions:Agglomerate and layer structures [J]. Journal of Chemical Physics, 1993.5873-5886.
[7] CLERCX H J H, BOSSIS G. Many-body electrostatic interactions in electrorheological fluids [J]. Physical Review E, 1993.2721-2738.
[8] FU L, RESCA L. Electrical response of heterogeneous systems with inclusions of arbitrary structure [J]. Physical Review B, 1994, (10):6625-6633.
[9] FU L, RESCA L. Exact treatment of the electrostatic interactions and surface effects in electrorheological fluids [J]. Physical Review B, 1996(5):2195-2198.doi:10.1103/PhysRevB.53.2195.
[10] ABE M, YAMAMOTO A, ORITA M. Control of particle alignment in water by an alternating electric field [J]. Langmuir, 2004, (17):7021-7026.doi:10.1021/la0490801.
[11] YAMAMOTO K, AKITA S, NAKAYAMA Y. Orientation of carbon nanotubes using electrophoresis [J]. Japanese Journal of Applied Physics, 1996.917-918.
[12] YAMAMOTO K, AKITA S, NAKAYAMA Y. Orientation and purification of carbon nanotubes using ac electrophoresis [J]. Journal of Physics D:Applied Physics, 1998.34-36.
[13] CHEN X Q, SAITO T, YAMADA H. Aligning single-wall carbon nanotubes with an alternating-current electric field [J]. Applied Physics Letters, 2001, (23):3714-3716.
[14] KUMAR M S, KIM T H, LEE S H. Influence of electric field type on the assembly of single walled carbon nanotubes [J]. Chemical Physics Letters, 2004, (3-4):235-239.doi:10.1016/j.cplett.2003.11.032.
[15] KAMAT P V, THOMAS K G, BARAZZOUK S. Self-assembled linear bundles of single wall carbon nanotubes and their alignment and deposition as a film in a dc field [J]. Journal of the American Chemical Society, 2004, (34):10757-10762.
[16] TANAKA K, FUJIOKA Y, KUBONO A. Electrically developed morphology of carbon nanoparticles in suspensions monitored by in situ optical observations under sinusoidal electric field [J]. Colloid and Polymer Science, 2006, (5):562-567.doi:10.1007/s00396-005-1414-2.
[17] BORDEL D, PUTAUX J L, HEUX L. Orientation of native cellulose in an electric field [J]. Langmuir, 2006, (11):4899-4901.doi:10.1021/la0600402.
[18] HU Z H, FISCHBEIN M D, QUERNER C. Electric-field-driven accumulation and alignment of CdSe and CdTe nanorods in nanoscale devices [J]. Nano Letters, 2006, (11):2585-2591.doi:10.1021/nl0620379.
[19] PRASSE T, FLANDIN L, SCHULTE K. In situ observation of electric field induced agglomeration of carbon black in epoxy resin [J]. Applied Physics Letters, 1998.2903-2905.
[20] SCHWARTZ M K, BAUHOFER W, SCHULTE K. Alternating electric field induced agglomeration of carbon black filled resins [J]. POLYMER, 2002, (10):3079-3082.doi:10.1016/S0032-3861(02)00084-8.
[21] PRASSE T, CAVAILLE J Y, BAUHOFER W. Electric anisotropy of carbon nanofibre/epoxy resin composites due to electric field induced alignment [J]. Composites Science and Technology, 2003, (13):1835-1841.doi:10.1016/S0266-3538(03)00019-8.
[22] PARK C, ROBERTSON R E. Alignment of particles by an electric field [J]. Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing, 1998.295-311.
[23] PARK C, ROBERTSON R E. Aligned microstructure of some particulate polymer composites obtained with an electric field [J]. Journal of Materials Science, 1998, (14):3541-3553.doi:10.1023/A:1004638825477.
[24] MARTIN C A, SANDLER J K W, WINDLE A H. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites [J]. Polymer, 2005, (3):877-886.doi:10.1016/j.polymer.2004.11.081.
[25] CHEN Z, YANG Y L, WU Z G. Electric-field-Enhanced assembly of single-walled-carbon nanotubes on a solid surface [J]. Journal of Physical Chemistry B, 2005.5473-5477.
[26] TAKAHASHI T, MURAYAMA T, HIGUCHI A. Aligning vapor-grown carbon fibers in polydimethylsiloxane using dc electric or magnetic field [J]. Carbon, 2006, (7):1180-1188.doi:10.1016/j.carbon.2005.10.055.
[27] CHUNG J, LEE KH, LEE J. Toward large-scale integration of carbon nanotubes [J]. Langmuir, 2004, (8):3011-3017.doi:10.1021/la035726y.
[28] CHUNG S, HWANG J, lEE J. Conductivity of single-walled carbon nanotubes deposited by composite electric-field guided assembly (CEGA) method [J]. Current Applied Physics, 2008(6):803-806.
[29] WANG H Q, ZHANG H Y, ZHAO W F. Preparation of polymer/oriented graphite nanosheet composite by electric field-inducement [J]. Composites Science and Technology, 2008.238-243.doi:10.1016/j.compscitech.2007.04.012.
[30] BIANCA M I, VANDER Z, GER J M. Alignment of rod-shaped gold particles by electric fields [J]. Journal of Physical Chemistry B, 1999.57-60.
[31] CHIRDON W M, O′BRIEN W J, ROBERTSON R E. Diffuse reflectance of short-fiber-reinforced composites aligned by an electric field [J]. Dental Materials, 2006, (1):57-62.doi:10.1016/j.dental.2005.03.004.
[32] CHIRDON W M, O′BRIEN W J, ROBERTSON R E. Fraunhofer diffraction of short-fiber-reinforced composites aligned by an electric field [J]. Dental Materials, 2006, (2):107-111.
[33] PARK C, ROBERTSON R E. Mechanical properties of resin composites with filler particles aligned by an electric field [J]. Dental Materials, 1998.385-393.
[34] NORMAN D A, ROBERTSON R E. The effect of fiber orientation on the toughening of short fiber-reinforced polymers [J]. Journal of Applied Polymer Science, 2003, (10):2740-2751.doi:10.1002/app.12913.
[35] NORMAN D A, ROBERTSON R E. Rigid-particle toughening of glassy polymers [J]. Polymer, 2003, (8):2351-2362.doi:10.1016/S0032-3861(03)00084-3.
[36] KIM G. Thermo-physical responses of polymeric composites tailored by electric field [J]. Composites Science and Technology, 2005, (11/12):1728-1735.
[37] PRASSE T. Elektrisch leitfhige polymere funktions-und strukturverbundwerkstoffe auf der basis von kohlenstoff-nanopartikeln und-fasern [D]. Technical University Hamburg-Harburg, 2001.
[38] JAROSLAV S, MILENA S, OTAKAR Q. Electrically anisotropic materials:Polyaniline particles organized in a polyurethane network [J]. Polymer International, 1997(5):283-287.
[39] KIM G, SHKEL Y M. Polymeric composites tailored by electric field [J]. Journal of Materials Research, 2004(1):1164-1174.
[40] JONES T B. Dielectrophoretic force calculation [J]. Journal of Electrostatics, 1979.69-82.
[41] BOTTCJER C J F. Theory of electric polarization [M]. New York:Elsevier, 1973.
[42] GAST A P, ZUKOSKI C F. Eletroheological fluids as colloidal suspensions [J]. Advances in Colloid and Interface Science, 1989.153-202.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(20574025,50373015)
更新日期/Last Update: 2014-03-23