参考文献/References:
[1] VENUGOPAL G, KRAUSE S, WNEK G E. Modification of polymer blend morphology using electric fields [J]. Journal of Polymer Science, 1989, (12):497-501.
[2] CHEN Y, SPRECHER A F, CONRAD H. Electrostatic particle-particle interactions in electrorheological fluids [J]. Journal of Applied Physics, 1991, (11):6796-6803.doi:10.1063/1.349855.
[3] HILL J C, VAN STEENKISTE T H. Response times of electrorheological fluids [J]. Journal of Applied Physics, 1991(3):1207-1211.
[4] CHEN T Y, BRISCOE B J, LUCKHAM P F. Microstructural studies of electro-rheological fluids under shear [J]. Journal of the Chemical Society, Faraday Transactions, 1995, (12):1787-1794.
[5] BONNECAZE R T, BRADY J F. Dynamic simulation of an electrorheological fluid [J]. Journal of Chemical Physics, 1992.2183-2202.
[6] MELROSE J R. Simulations of electrorheological and particle mixture suspensions:Agglomerate and layer structures [J]. Journal of Chemical Physics, 1993.5873-5886.
[7] CLERCX H J H, BOSSIS G. Many-body electrostatic interactions in electrorheological fluids [J]. Physical Review E, 1993.2721-2738.
[8] FU L, RESCA L. Electrical response of heterogeneous systems with inclusions of arbitrary structure [J]. Physical Review B, 1994, (10):6625-6633.
[9] FU L, RESCA L. Exact treatment of the electrostatic interactions and surface effects in electrorheological fluids [J]. Physical Review B, 1996(5):2195-2198.doi:10.1103/PhysRevB.53.2195.
[10] ABE M, YAMAMOTO A, ORITA M. Control of particle alignment in water by an alternating electric field [J]. Langmuir, 2004, (17):7021-7026.doi:10.1021/la0490801.
[11] YAMAMOTO K, AKITA S, NAKAYAMA Y. Orientation of carbon nanotubes using electrophoresis [J]. Japanese Journal of Applied Physics, 1996.917-918.
[12] YAMAMOTO K, AKITA S, NAKAYAMA Y. Orientation and purification of carbon nanotubes using ac electrophoresis [J]. Journal of Physics D:Applied Physics, 1998.34-36.
[13] CHEN X Q, SAITO T, YAMADA H. Aligning single-wall carbon nanotubes with an alternating-current electric field [J]. Applied Physics Letters, 2001, (23):3714-3716.
[14] KUMAR M S, KIM T H, LEE S H. Influence of electric field type on the assembly of single walled carbon nanotubes [J]. Chemical Physics Letters, 2004, (3-4):235-239.doi:10.1016/j.cplett.2003.11.032.
[15] KAMAT P V, THOMAS K G, BARAZZOUK S. Self-assembled linear bundles of single wall carbon nanotubes and their alignment and deposition as a film in a dc field [J]. Journal of the American Chemical Society, 2004, (34):10757-10762.
[16] TANAKA K, FUJIOKA Y, KUBONO A. Electrically developed morphology of carbon nanoparticles in suspensions monitored by in situ optical observations under sinusoidal electric field [J]. Colloid and Polymer Science, 2006, (5):562-567.doi:10.1007/s00396-005-1414-2.
[17] BORDEL D, PUTAUX J L, HEUX L. Orientation of native cellulose in an electric field [J]. Langmuir, 2006, (11):4899-4901.doi:10.1021/la0600402.
[18] HU Z H, FISCHBEIN M D, QUERNER C. Electric-field-driven accumulation and alignment of CdSe and CdTe nanorods in nanoscale devices [J]. Nano Letters, 2006, (11):2585-2591.doi:10.1021/nl0620379.
[19] PRASSE T, FLANDIN L, SCHULTE K. In situ observation of electric field induced agglomeration of carbon black in epoxy resin [J]. Applied Physics Letters, 1998.2903-2905.
[20] SCHWARTZ M K, BAUHOFER W, SCHULTE K. Alternating electric field induced agglomeration of carbon black filled resins [J]. POLYMER, 2002, (10):3079-3082.doi:10.1016/S0032-3861(02)00084-8.
[21] PRASSE T, CAVAILLE J Y, BAUHOFER W. Electric anisotropy of carbon nanofibre/epoxy resin composites due to electric field induced alignment [J]. Composites Science and Technology, 2003, (13):1835-1841.doi:10.1016/S0266-3538(03)00019-8.
[22] PARK C, ROBERTSON R E. Alignment of particles by an electric field [J]. Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing, 1998.295-311.
[23] PARK C, ROBERTSON R E. Aligned microstructure of some particulate polymer composites obtained with an electric field [J]. Journal of Materials Science, 1998, (14):3541-3553.doi:10.1023/A:1004638825477.
[24] MARTIN C A, SANDLER J K W, WINDLE A H. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites [J]. Polymer, 2005, (3):877-886.doi:10.1016/j.polymer.2004.11.081.
[25] CHEN Z, YANG Y L, WU Z G. Electric-field-Enhanced assembly of single-walled-carbon nanotubes on a solid surface [J]. Journal of Physical Chemistry B, 2005.5473-5477.
[26] TAKAHASHI T, MURAYAMA T, HIGUCHI A. Aligning vapor-grown carbon fibers in polydimethylsiloxane using dc electric or magnetic field [J]. Carbon, 2006, (7):1180-1188.doi:10.1016/j.carbon.2005.10.055.
[27] CHUNG J, LEE KH, LEE J. Toward large-scale integration of carbon nanotubes [J]. Langmuir, 2004, (8):3011-3017.doi:10.1021/la035726y.
[28] CHUNG S, HWANG J, lEE J. Conductivity of single-walled carbon nanotubes deposited by composite electric-field guided assembly (CEGA) method [J]. Current Applied Physics, 2008(6):803-806.
[29] WANG H Q, ZHANG H Y, ZHAO W F. Preparation of polymer/oriented graphite nanosheet composite by electric field-inducement [J]. Composites Science and Technology, 2008.238-243.doi:10.1016/j.compscitech.2007.04.012.
[30] BIANCA M I, VANDER Z, GER J M. Alignment of rod-shaped gold particles by electric fields [J]. Journal of Physical Chemistry B, 1999.57-60.
[31] CHIRDON W M, O′BRIEN W J, ROBERTSON R E. Diffuse reflectance of short-fiber-reinforced composites aligned by an electric field [J]. Dental Materials, 2006, (1):57-62.doi:10.1016/j.dental.2005.03.004.
[32] CHIRDON W M, O′BRIEN W J, ROBERTSON R E. Fraunhofer diffraction of short-fiber-reinforced composites aligned by an electric field [J]. Dental Materials, 2006, (2):107-111.
[33] PARK C, ROBERTSON R E. Mechanical properties of resin composites with filler particles aligned by an electric field [J]. Dental Materials, 1998.385-393.
[34] NORMAN D A, ROBERTSON R E. The effect of fiber orientation on the toughening of short fiber-reinforced polymers [J]. Journal of Applied Polymer Science, 2003, (10):2740-2751.doi:10.1002/app.12913.
[35] NORMAN D A, ROBERTSON R E. Rigid-particle toughening of glassy polymers [J]. Polymer, 2003, (8):2351-2362.doi:10.1016/S0032-3861(03)00084-3.
[36] KIM G. Thermo-physical responses of polymeric composites tailored by electric field [J]. Composites Science and Technology, 2005, (11/12):1728-1735.
[37] PRASSE T. Elektrisch leitfhige polymere funktions-und strukturverbundwerkstoffe auf der basis von kohlenstoff-nanopartikeln und-fasern [D]. Technical University Hamburg-Harburg, 2001.
[38] JAROSLAV S, MILENA S, OTAKAR Q. Electrically anisotropic materials:Polyaniline particles organized in a polyurethane network [J]. Polymer International, 1997(5):283-287.
[39] KIM G, SHKEL Y M. Polymeric composites tailored by electric field [J]. Journal of Materials Research, 2004(1):1164-1174.
[40] JONES T B. Dielectrophoretic force calculation [J]. Journal of Electrostatics, 1979.69-82.
[41] BOTTCJER C J F. Theory of electric polarization [M]. New York:Elsevier, 1973.
[42] GAST A P, ZUKOSKI C F. Eletroheological fluids as colloidal suspensions [J]. Advances in Colloid and Interface Science, 1989.153-202.