[1]刘岚,吴逢铁,曾夏辉.无衍射光束的轴上光强和最大准直距离[J].华侨大学学报(自然科学版),2007,28(4):350-352.[doi:10.3969/j.issn.1000-5013.2007.04.004]
 LIU Lan,WU Feng-tie,ZENG Xia-hui.Study on the On-Axis Intensity and the Maximum Collimated Distance for an Non-Diffraction Beam[J].Journal of Huaqiao University(Natural Science),2007,28(4):350-352.[doi:10.3969/j.issn.1000-5013.2007.04.004]
点击复制

无衍射光束的轴上光强和最大准直距离()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第28卷
期数:
2007年第4期
页码:
350-352
栏目:
出版日期:
2007-10-20

文章信息/Info

Title:
Study on the On-Axis Intensity and the Maximum Collimated Distance for an Non-Diffraction Beam
文章编号:
1000-5013(2007)04-0350-03
作者:
刘岚吴逢铁曾夏辉
华侨大学信息科学与工程学院; 华侨大学信息科学与工程学院 福建泉州362021; 福建泉州362021
Author(s):
LIU Lan WU Feng-tie ZENG Xia-hui
College of Information Science and Engineering, Huaqiao University, Quanzhou 362021, China
关键词:
无衍射光束 轴棱镜 轴上光强 最大准直距离
Keywords:
non-diffraction beam axicon on-axis intensity maximum non-diffraction distance
分类号:
O436
DOI:
10.3969/j.issn.1000-5013.2007.04.004
文献标志码:
A
摘要:
利用柯林斯公式推广,在柱坐标下的广义惠更斯-菲涅尔衍射积分公式,推导出用锥形透镜产生的近似无衍射光束的纵向传输分布,且进一步得到轴上光强公式,并用几何光学分析法得到最大准直距离的公式.根据数值模拟的轴上光强,分别讨论轴棱镜底角对轴上光强分布的影响,入射光束半径R、底角φ对最大准直距离Zmax的影响.实验结果表明,轴上光强随着底角的增大而增大,最大准直距离Zmax随入射光束半径R增大而增大并近似与R成正比,最大准直距离Zmax随底角增大而减小且近似与底角反比.
Abstract:
Using the Collins formula and Huygens-Fresnel diffraction integral theory,the on-axis beam intensity formula of a non-diffraction beam generated by an aperture plane wave impinging through an axicon was given.Based on the simple geometrical theory,it is easy to deduce equation of the maximum non-diffraction distance.In this paper,we analyzed the distribution of the on-axis intensity and the effect of both the radius R of the aperture and the base angel of the axicon on the maximum non-diffraction distance according to the numerical calculation.The experimental results show that the on-axis intensity increased with the increasing of the base angle of the axicon; the maximum non-diffraction distance Zmax increased with the radius R of the incident beam and proportional with the R,and inverse proportional with the base angle of the axicon.

参考文献/References:

[1] DURNIN J. Exact solutions for nondiffracting beams (Ⅰ):The scalar theory [J]. Journal of the Optical Society of America A:Optics, Image Science and Vision, 1987(4):651-654.
[2] 王志坚, 周庆才, 付跃刚. 无衍射光束与零阶函数 [J]. 长春理工大学学报, 2002(2):19-21.doi:10.3969/j.issn.1672-9870.2002.02.007.
[3] JUN A, KAZUTO Y, DAISUKE S. Laser-based microprocesses using diffraction-free beams generated by diffractive axicon [J]. Proceedings of Spie, 2005.497-507.
[4] MANZ T, SCHWARZ U T, MAIER M. Stimulated stokes and anti-stokes Raman scattering in liquid acetone with a Bessel beam [J]. Optics Communications, 2004.201-217.
[5] GARCES-CHAVE(Z) V, MCGLOIN D, SIBBETT W. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam [J]. Nature, 2002.145-149.doi:10.1038/nature01007.
[6] LEI Ming, YAO Bao-li. Characteristics of beam profile of Gaussian beam passing through an axicon [J]. Optics Communications, 2004.367-372.
[7] 周莉萍, 赵斌, 李柱. 无衍射光束理论与实现 [J]. 光学精密工程, 1997(4):14-19.
[8] WEI Ming-lar, SHAO Wen-long, LIN Yi-tse. Adjustable generation of bottle and hollow beams using an axicon [J]. Optics Communications, 2005.7-14.
[9] 吕百达. 强激光的控制与传输 [M]. 北京:国防工业出版社, 1999.23-24.
[10] 邢笑雪, 吴逢铁, 张建荣. 无衍射J0光束的理论分析 [J]. 华侨大学学报(自然科学版), 2006(1):31-34.doi:10.3969/j.issn.1000-5013.2006.01.008.
[11] 曾夏辉, 吴逢铁, 邢笑雪. 轴棱锥非圆对称加工误差对贝塞尔光束质量的影响 [J]. 中国激光, 2006(6):809-813.doi:10.3321/j.issn:0258-7025.2006.06.020.

相似文献/References:

[1]王硕琛,梅小华,谢晓霞,等.无衍射光束簇[J].华侨大学学报(自然科学版),2016,37(2):149.[doi:10.11830/ISSN.1000-5013.2016.02.0149]
 WANG Shuochen,MEI Xiaohua,XIE Xiaoxia,et al.Family of Non-Diffractting Beam[J].Journal of Huaqiao University(Natural Science),2016,37(4):149.[doi:10.11830/ISSN.1000-5013.2016.02.0149]

备注/Memo

备注/Memo:
福建省自然科学基金资助项目(A0410017)
更新日期/Last Update: 2014-03-23