[1]方瑞明.集成RS和SVR的电力系统短期负荷预测方法[J].华侨大学学报(自然科学版),2007,28(3):252-255.[doi:10.3969/j.issn.1000-5013.2007.03.008]
 FANG Rui-ming.Short-Term Load Forecasting of Power System with Rough Set and Support Vector Regression[J].Journal of Huaqiao University(Natural Science),2007,28(3):252-255.[doi:10.3969/j.issn.1000-5013.2007.03.008]
点击复制

集成RS和SVR的电力系统短期负荷预测方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第28卷
期数:
2007年第3期
页码:
252-255
栏目:
出版日期:
2007-07-20

文章信息/Info

Title:
Short-Term Load Forecasting of Power System with Rough Set and Support Vector Regression
文章编号:
1000-5013(2007)03-0252-04
作者:
方瑞明
华侨大学信息科学与工程学院 福建泉州362021
Author(s):
FANG Rui-ming
College of Information Science and Engineering, Huaqiao University, Quanzhou 362021, China
关键词:
电力系统 训练样本 短期负荷预测 粗糙集 支持向量回归
Keywords:
power system trained sample short-term load forecasting rough set support vector regression
分类号:
TM715
DOI:
10.3969/j.issn.1000-5013.2007.03.008
文献标志码:
A
摘要:
基于粗糙集(RS)理论和支持向量回归(SVR)方法,提出一种电力系统短期负荷预测方法.采用粗糙集理论对影响负荷预测的各因素进行约简,将约简后得到的最小条件属性集,以此确定输入样本的维数并构造训练样本,作为支持向量回归机的输入进行训练预测.在此基础上,利用已知历史负荷数据构造训练样本群,作为SVR的输入进行训练,采用训练完毕后的SVR模型进行负荷预测.实验结果表明,与神经网络方法和标准SVR方法相比,集成粗糙集和支持向量回归的负荷预测方法,可以在缩短训练时间的前提下获得较高的预测精度.
Abstract:
A novel method to short-term load forecasting of power system based on rough set theory(RST) and support vector regression(SVR) is presented.Firstly,the factors that affect the load forecasting are reduced using RST method.Then a SVR module is trained with the historical load data whose dimension is constructed according to the minimum attributes set acquired by RST.Finally the trained SVR module is used to forecast the future short-term load.The experimental results show that,when compared against both neural network method and standard SVR method,the proposed method can forecast more accurate results while shortening the training time.

参考文献/References:

[1] 康重庆, 白利超, 夏清. 电力市场中发电商的风险决策 [J]. 中国电机工程学报, 2004(8):1-6.doi:10.3321/j.issn:0258-8013.2004.08.001.
[2] HAIDA T, MUTO S. Regression based peak load forecasting using a transformation technique [J]. IEEE Transactions on Power Systems, 1994(4):1788-1794.doi:10.1109/59.331433.
[3] PAPALEXOPOULOS A D, HESTERBERG T C. A regression-based approach to short-term load forecasting [J]. IEEE Transactions on Power Systems, 1990(4):1535-1550.
[4] 赵宏伟, 任震, 黄雯莹. 基于周期自回归模型的短期负荷预测 [J]. 中国电机工程学报, 1997(5):348-351.
[5] INFIELD D G, HILL D C. Optimal smoothing for trend removal in short term electricity demand forecasting [J]. IEEE Transactions on Power Systems, 1998(3):1115-1120.doi:10.1109/59.709108.
[6] SPYROS T, ELPIDA T. Computational intelligence techniques for short-term electric load forecasting [J]. Journal of Intelligent and Robotic Systems, 2001.7-68.
[7] VAPNIK V N. The nature of statistical learning theory [M]. New York:Springer-Verlag, 2000.
[8] MOHAMED M. Support vector machines for short-term electrical load forecasting [J]. International Journal of Energy Research, 2002.335-345.
[9] 李元诚, 方廷健, 于尔铿. 短期负荷预测的支持向量机方法研究 [J]. 中国电机工程学报, 2003(5):55-59.doi:10.3321/j.issn:0258-8013.2003.06.011.
[10] 王国胤. Rough集理论与知识获取 [M]. 西安:西安交通大学出版社, 2001.
[11] 王珏, 王任, 苗夺谦. 基于Rough Set理论的数据浓缩 [J]. 计算机学报, 1998(5):393-400.doi:10.3321/j.issn:0254-4164.1998.05.002.
[12] 赵荣泳, 张浩, 李翠玲. 粗糙集连续属性离散化模型研究与应用要点分析 [J]. 计算机工程与应用, 2005(8):40-42.doi:10.3321/j.issn:1002-8331.2005.08.013.
[13] 谢宏, 程浩忠, 张国立. 基于粗糙集理论建立短期电力负荷神经网络预测模型 [J]. 中国电机工程学报, 2003, (11):1-4.doi:10.3321/j.issn:0258-8013.2003.11.001.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(50477010)
更新日期/Last Update: 2014-03-23