[1]陈柏生.HSV彩色空间的室内外运动人检测与阴影消除[J].华侨大学学报(自然科学版),2007,28(1):30-33.[doi:10.3969/j.issn.1000-5013.2007.01.009]
 CHEN Bai-sheng.Indoor and Outdoor People Detection and Shadow Elimination by Exploiting HSV Color Information[J].Journal of Huaqiao University(Natural Science),2007,28(1):30-33.[doi:10.3969/j.issn.1000-5013.2007.01.009]
点击复制

HSV彩色空间的室内外运动人检测与阴影消除()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第28卷
期数:
2007年第1期
页码:
30-33
栏目:
出版日期:
2007-01-20

文章信息/Info

Title:
Indoor and Outdoor People Detection and Shadow Elimination by Exploiting HSV Color Information
文章编号:
1000-5013(2007)01-0030-04
作者:
陈柏生
华侨大学信息科学与工程学院 福建泉州362021
Author(s):
CHEN Bai-sheng
College of Information Science and Engineering, Huaqiao University, Quanzhou 362021, China
关键词:
运动检测 背景减除 HSV彩色空间 阴影消除
Keywords:
motion detection background subtraction HSV color space shadow elimination
分类号:
TP391.41
DOI:
10.3969/j.issn.1000-5013.2007.01.009
文献标志码:
A
摘要:
提出一种用于运动目标的分割,基于最大统计概率的自适应背景模型,采用简单的背景重建方法,用于维护背景以适应场景的动态变化.利用阴影区域亮度和色调的特点,在HSV(Hue Sataration Value)空间消除运动阴影,使得运动目标的分割更为准确.为了客观的评价所提出的阴影检测算法的性能,引入一种量化的方法,对不同光照和环境条件视频的实验结果及量化分析表明,方法是有效的.
Abstract:
A method to divide the motion target by using an adaptive background model based on maximum statistical probability is proposed in this paper.Using a simple method of background reconstruction and background maintenance to adapt the scene changed.Moving cast shadows mostly exhibit a challenge for accurate moving targets detection; the problem is addressed in this paper by exploiting HSV(Hue Sataration Value) color information.Furthermore,a quantitative method is introduced to evaluate the algorithm on a benchmark suite of indoor and outdoor video sequences.The experimental results are given and the performance of the algorithm is effect.

参考文献/References:

[1] HARITAOGLU I, HARWOOD D, DAVIS L. W4:Real-time surveillance of people and their activities [J]. IEEE, Transaction on Pattern Analysis and Machine Intelligence, 2000(8):809-830.
[2] STAUFFER C, GRIMSON W. Adaptive background mixture models for real-time tracking [A]. Colorado:Fort Collins, 1999.246-252.
[3] YONEYAMA A, YEG C H, KUO C-C J. Moving cast shadow elimination for robust vehicle extraction based on 2D joint vehicle/shadow models [A]. Houston:IEEE Coomputer Society Press, 2003.229-236.
[4] 王运琼, 游志胜, 刘直芳. 基于空间特征的汽车阴影分割方法 [J]. 光电工程, 2003(2):64-67.doi:10.3969/j.issn.1003-501X.2003.02.019.
[5] ROSIN P L, ELLIS T. Image difference threshold strategies and shadow detection [M]. Birmingham:BMVA Press, 1995.347-356.
[6] PRATI A, MIKIC I, TRIVEDI M M, CUCCHIARA R. Detecting moving shadows:algorithms and evaluation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003(7):918-923.

相似文献/References:

[1]张静,陈锦春,黄华灿.概率密度估计和阴影抑制的运动目标检测[J].华侨大学学报(自然科学版),2010,31(1):20.[doi:10.11830/ISSN.1000-5013.2010.01.0020]
 ZHANG Jing,CHEN Jin-chun,HUANG Hua-can.Kenel Density Estimation for Motion Detection and Shadow Suppression[J].Journal of Huaqiao University(Natural Science),2010,31(1):20.[doi:10.11830/ISSN.1000-5013.2010.01.0020]

更新日期/Last Update: 2014-03-23