[1]王全凤,黄庆丰,王凌云.断层剪力墙高层建筑抗震设计理论与关键技术[J].华侨大学学报(自然科学版),2006,27(2):113-118.[doi:10.3969/j.issn.1000-5013.2006.02.001]
 Wang Quanfeng,Huang Qingfeng,Wang Lingyun.Theory and Key Technique for the Seismic Design of High-Rise Building with Fault Shear Wall[J].Journal of Huaqiao University(Natural Science),2006,27(2):113-118.[doi:10.3969/j.issn.1000-5013.2006.02.001]
点击复制

断层剪力墙高层建筑抗震设计理论与关键技术()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第27卷
期数:
2006年第2期
页码:
113-118
栏目:
出版日期:
2006-04-20

文章信息/Info

Title:
Theory and Key Technique for the Seismic Design of High-Rise Building with Fault Shear Wall
文章编号:
1000-5013(2006)02-0113-06
作者:
王全凤黄庆丰王凌云
华侨大学土木工程学院; 东南大学土木工程学院 福建 泉州 362021; 福建 泉州 362021; 江苏 南京 210096
Author(s):
Wang Quanfeng Huang Qingfeng Wang Lingyun
College of Civil Engineering, Huaqiao University, 362021, Quanzhou, China; College of Civil Engineering, Southeast University, 210096, Nanjing, China
关键词:
断层剪力墙 框架-剪力墙结构 抗震设计 性能评价 高层建筑
Keywords:
fault shear wall frame-shear wall structure seismic design performance evaluation high-rise building
分类号:
TU973.31
DOI:
10.3969/j.issn.1000-5013.2006.02.001
文献标志码:
A
摘要:
断层剪力墙高层框架-剪力墙结构是一种新型的高层结构,对它的动力特性和抗震性能还不是很清楚,有必要寻求新的分析方法和计算理论.文中介绍断层剪力墙高层框架-剪力墙结构弹塑性动力反应、结构弹塑性抗震性能与设计理论,以及其设计的关键技术,提出结构弹塑性动力性能和抗震性能分析与评价的新思路.该理论可用于断层剪力墙高层结构抗震设计及研究,也可进一步发展应用于分析解决结构减振耗能、振动控制和基础隔震等问题.
Abstract:
The frame-shear wall high-rise structure with fault shear wall is a new type high-rise structure. Its dynamic characteristics and seismic performance have not been investigated deeply till now, so it is imperative to seek a new method of analysis and new theory of calculation. In addition to introduce its elastoplastic dynamic response, elastoplastic seismic performance of the structure, theory and key technique of design, the authors present a new idea about elastoplastic dynamic performance of the structure as well as the analysis and evaluation of its seismic performance. This new idea or thinking can be used in the seismic design and research of high-rise structure with fault shear wall. Furthermore, it can also be applied to analyze and settle the problems of the vibration reduction and energy dissipation of the structure, vibration control and base isolation.

参考文献/References:

[1] Safak E, Frankel A. Structural response to 3D simulated earthquake motions [J]. Journal of Structural Engineering, 1994, (10):2820-2839.doi:10.1061/(ASCE)0733-9445(1994)120:10(2820).
[2] 史密斯B B, 库乐A, 陈瑜. 高层建筑结构分析与设计 [M]. 北京:地震出版社, 1993.301-327.
[3] Wang Quanfeng, Wang Lingyun, Liu Qiangsheng. Seismic response of stepped frame-shear wall structures by using numerical method [J]. International Journal of Computer Methods in Applied Mechanics and Engineering, 1999, (1-2):31-39.doi:10.1016/S0045-7825(98)00253-9.
[4] Wang Quanfeng, Wang Lingyun, Liu Qiangsheng. Effect of shear wall height on earthquake response [J]. International Journal of Engineering Structures, 2001(4):376-384.doi:10.1016/S0141-0296(00)00044-4.
[5] 韦承基. 弹塑性位移比谱 [J]. 建筑结构学报, 1983(1):40-48.
[6] Chopra A K, Coel P K. A model pushover analysis procedure for estimating seismic demands for buildings [J]. Earthquake Engineering & Structural Dynamics, 2002.561-582.
[7] 徐培福, 黄小坤. 高层建筑混凝土结构技术规程理解与应用 [M]. 北京:中国建筑工业出版社, 2003.30-50.
[8] 中华人民共和国建设部. JGJ 3-2002.高层建筑混凝土结构技术规程 [S]. 北京:中国建筑工业出版社, 2002.96-108.
[9] 梁兴文, 王庆霖, 易文宗. 框支连续墙梁抗震性能及设计计算 [J]. 建筑结构学报, 1998(4):9-17.
[10] 郑山锁, 薛建钢. 底部框剪砌体房屋抗震分析与设计 [M]. 北京:中国建材工业出版社, 2002.1-10.
[11] Juwhan K, Kevin R, Collins A M. Closer look at the drift demand spectrum [J]. Journal of Structural Engineering, 2002(6):942-945.
[12] Leelataviwat S, Subhash C G, Bozidar S. Energy-based seismic design of structures using yield mechanism and target drift [J]. Journal of Structural Engineering, 2002(8):1046-1054.
[13] 周云, 徐彤, 周福霖. 抗震和减振结构的能量分析方法研究与应用 [J]. 地震工程与工程振动, 1999(4):133-139.doi:10.3969/j.issn.1000-1301.1999.04.021.
[14] Newmark N N. Numerical procedure for compuring deflections, moment and buckling loads [J]. Transactions of the American Society of Civil Engineers, 1943, (108):1161-1234.
[15] 钟万勰. 暂态历程的精细计算方法 [J]. 计算结构力学及其应用, 1995(1):1-6.
[16] 顾元宪, 陈飚松, 张洪武. 结构动力方程的增维精细积分法 [J]. 力学学报, 2000(4):447-456.doi:10.3321/j.issn:0459-1879.2000.04.008.
[17] 吕和祥, 于洪洁, 裘春航. 动力学方程的积分型直接积分法 [J]. 应用数学和力学, 2001(2):151-156.doi:10.3321/j.issn:1000-0887.2001.02.006.
[18] 秦荣. 计算结构力学 [M]. 北京:科学出版社, 2001.284-306.
[19] 潘尔顺, 孙小明, 胡宗武. 复杂非线性系统动力分析的一种方法 [J]. 机械科学与技术, 2001(4):492-493.doi:10.3321/j.issn:1003-8728.2001.04.005.
[20] 徐鸿. 多自由度非线性系统动力响应时程分析技术 [J]. 核动力工程, 1995(2):108-114.
[21] 黄庆丰, 王全凤, 胡云昌. 时程积分过程中结构运动参数的协调 [J]. 固体力学学报, 2004(1):5-10.doi:10.3969/j.issn.0254-7805.2004.01.002.
[22] 黄庆丰, 王全凤, 胡云昌. 主动变刚度结构的动力卸载效应 [J]. 地震工程与工程振动, 2003(5):157-162.doi:10.3969/j.issn.1000-1301.2003.05.025.
[23] 陆秋海, 李德保. 模态理论的进展 [J]. 力学进展, 1996(4):464-472.
[24] Collins K R, Choung Y K, Foutch D A. Dual-level seismic design:A reliability-based methodology [J]. Earthquake Engineering & Structural Dynamics, 1996.1433-1467.
[25] Anderson C, Chen W, Yin P. Seismic behavior of a high-strength concrete framed tube [J]. structural Design of Tall Buildings, 1997(6):333-350.doi:10.1002/(SICI)1099-1794(199712)6:4< 333::AID-TAL100> 3.0.CO; 2-5.
[26] 李康宁, Tetso K, Carlos E V. 建筑结构三维分析模型及其用于结构地震反应分析的可靠性 [J]. 建筑结构, 2000(6):14-18.
[27] 叶献国. 基于非线性分析的钢筋混凝土结构地震反应与破损的数值模拟 [J]. 土木工程学报, 1998(8):3-13.
[28] 焦双键, 魏巍, 冯启民. 钢筋混凝土框架地震破坏研究概述 [J]. 世界地震工程, 2000(4):42-46.doi:10.3969/j.issn.1007-6069.2000.04.008.
[29] 陈滔, 黄宗明. 钢筋混凝土框架非弹性地震反应分析模型研究进展 [J]. 世界地震工程, 2002(1):91-97.doi:10.3969/j.issn.1007-6069.2002.01.018.
[30] Chung Y S, Meyer C, Shinozwha M. Modeling of concrete damage [J]. Journal of Struct ACI, 1989(3):259-270.
[31] 高仲学, 王修信, 王恒华. 钢筋混凝土框架结构动力失效研究 [J]. 东南大学学报(自然科学版), 2000(5):81-85.doi:10.3321/j.issn:1001-0505.2000.05.019.
[32] Banon H, Irving H M, Biggs J M. Seismic damage in reinforced concrete frames [J]. ASCE Journal of Structural Division, 1981(9):1688-1695.
[33] Park Y K, Ang A H S. Mechanistic seismic damage model for reinforced concrete [J]. ASCE Journal of Structural Engineenring, 1985(4):722-739.
[34] 王光远, 程耿东, 邵卓民. 抗震结构的最优设防烈度与可靠度 [M]. 北京:科学出版社, 1999.1-422.
[35] 欧进萍, 吴波. 弹塑性随机振动系统中恢复力数学模型的若干形式 [J]. 应用力学学报, 1995(1):63-71.
[36] 王全凤, 施士升. 框架-剪力墙高层建筑抗地震荷载剪力墙数量的优化分析 [J]. 土木工程学报, 1981(3):1-12.
[37] Simth H A, Wu W H. Effective optimal structural control of soil-structure interaction systems [J]. Earthquake Engineering & Structural Dynamics, 1997.549-570.
[38] 杜修力. 结构弹塑性地震反应现状评述 [J]. 工程力学, 1994(2):99-104.

相似文献/References:

[1]王全凤.剪力墙最优刚度及其计算机实现[J].华侨大学学报(自然科学版),1999,20(3):249.[doi:10.11830/ISSN.1000-5013.1999.03.0249]
 Wang Quanfeng.Optimal Stiffness of Shear Wall and Its Implementation on Computer[J].Journal of Huaqiao University(Natural Science),1999,20(2):249.[doi:10.11830/ISSN.1000-5013.1999.03.0249]

备注/Memo

备注/Memo:
国家自然科学基金资助项目(50578066)福建省自然科学基金资助项目(E0410023)
更新日期/Last Update: 2014-03-23