[1]彭兴黔.圆锥模拉拔问题的下限解析解[J].华侨大学学报(自然科学版),2006,27(1):58-60.[doi:10.3969/j.issn.1000-5013.2006.01.015]
 Peng Xingqian.Lower Bound Analytic Solution to the Drawing through Circular Cone Dies[J].Journal of Huaqiao University(Natural Science),2006,27(1):58-60.[doi:10.3969/j.issn.1000-5013.2006.01.015]
点击复制

圆锥模拉拔问题的下限解析解()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第27卷
期数:
2006年第1期
页码:
58-60
栏目:
出版日期:
2006-01-20

文章信息/Info

Title:
Lower Bound Analytic Solution to the Drawing through Circular Cone Dies
文章编号:
1000-5013(2006)01-0058-03
作者:
彭兴黔
华侨大学土木工程学院 福建泉州362021
Author(s):
Peng Xingqian
College of Civil Engineering, Huaqiao University, 362021, Quanzhou, China
关键词:
圆锥模 拉拔 解析解 塑性加工
Keywords:
circular die drawing analytic solution plastic processing
分类号:
TG356
DOI:
10.3969/j.issn.1000-5013.2006.01.015
文献标志码:
A
摘要:
金属材料通过阴模拉拔加工,因速度场方法的数学分析较为简单,所以常用其求解拉拔加工问题.基于材料的物理非线性,求解其平衡微分方程数学难度较大,较少采用应力法求解.文中忽略较小剪应力对材料屈服的影响,求解出圆锥模拉拔问题的下限应力解.算例的结果介于速度场上限解析解和应力场近似解之间,表明文中的应力解析解更为合理,可供塑性拉拔加工工程参考.
Abstract:
Due to the simplicity of the velocity field method in mathematical analysis,the method of velocity field is generally adopted to solve the equation of drawing metal material.Owing to the physical nonlinearity of material,it is difficult to solve stress differential equation,so the stress method is seldom adopted.Neglecting small effect of shear stress on the yield criterion,the lower bound of stress analytic solution to the drawing through dies of circular cone is obtained.The calculation result is in the range of the upper bound analytic solution of velocity field and approximate solution of stress field,showing that this method is more reasonable,may serve as a reference for the plastic processing of drawing.

参考文献/References:

[1] Avitzur B. Metal forming processes and analysis [M]. New York:McGraw Hill Book Co, 1968.154-160.
[2] 赵德文, 刘相华, 王国栋. 抛物线模轴对称拉拔曲面积分问题 [J]. 东北大学学报(自然科学版), 1995(2):145-151.
[3] 赵德文, 刘相华, 王国栋. 抛物线模拉拔方棒的上界解析解 [J]. 力学与实践, 1996(4):20-23.
[4] 王仁, 熊祝华, 黄文彬. 塑性力学基础 [M]. 北京:科学出版社, 1982.372-380.
[5] 徐秉业. 塑性力学 [M]. 北京:高等教育出版社, 1988.270-276.
[6] 吴承伟. 粗糙表面接触研究进展 [J]. 力学进展, 1991(1):96-108.
[7] 薜群基, 张军. 微观摩擦学研究进展 [J]. 摩擦学学报, 1994(4):360-369.
[8] 闫小青, 扶名福. 锥形模圆柱体挤压非局部摩擦问题 [J]. 南昌大学学报(工科版), 2003(3):10-12.doi:10.3969/j.issn.1006-0456.2003.03.003.

备注/Memo

备注/Memo:
福建省自然科学基金资助项目(E0510022); 福建省建设厅科技计划基金资助项目(05-22-15)
更新日期/Last Update: 2014-03-23