[1]黄建新.视频流分析的隐藏马尔可夫链算法[J].华侨大学学报(自然科学版),2004,25(3):244-246.[doi:10.3969/j.issn.1000-5013.2004.03.005]
 Huang Jianxin.Applying Hidden Markov Chain Algorithm to Video-Stream Analysis[J].Journal of Huaqiao University(Natural Science),2004,25(3):244-246.[doi:10.3969/j.issn.1000-5013.2004.03.005]
点击复制

视频流分析的隐藏马尔可夫链算法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第25卷
期数:
2004年第3期
页码:
244-246
栏目:
出版日期:
2004-07-20

文章信息/Info

Title:
Applying Hidden Markov Chain Algorithm to Video-Stream Analysis
文章编号:
1000-5013(2004)03-0244-03
作者:
黄建新
华侨大学数学系 福建泉州362011
Author(s):
Huang Jianxin
Dept. of Math., Huaqiao Univ., 362011, Quanzhou, China
关键词:
视频分析 马尔可夫链模型 卡尔曼估计 人体运动跟踪
Keywords:
video analysis Markov chain model kalman estimate tracking moving human body
分类号:
O211.6
DOI:
10.3969/j.issn.1000-5013.2004.03.005
文献标志码:
A
摘要:
视频流分析是多媒体技术研究的重要内容,具有广泛的应用领域 .应用马尔可夫链模型,研究视频中的人体运动目标位置的跟踪 .通过对跟踪的第一帧视频中的人体区域进行手工标注,建立马尔可夫链模型 .然后结合卡尔曼估计算法,跟踪出下一帧的人体位置 .实验证明,这种算法可以有效地解决在复杂的运动背景下,人体运动目标的跟踪问题
Abstract:
Tracking a moving target is the main topic in video stream analysis which is a hotspot in the study of multimedia technology. In this paper, the hidden Markov chain algorithm is applied to tracking moving target position of human body in motion video. A Markov chain model is built at first by marking manually the area of human body to be tracked at the first frame of video. And then, the position of human body at the next frame of video is tracked down by combining with kalman algorithm of estimate. As proved by experiment, this algorithm is able to settle effectively the problem of tracking moving target of human body against a complex moving background.

参考文献/References:

[1] Yamamoto M, Koshikawa K. Human motion analysis based on a robot arm model [J]. CVPR, 1991.664-665.
[2] Yamada M, Ebihara K, Ohya J. A new robust real time method for extracting human sihouettes from color image [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998(3):226-239.doi:10.1109/34.667881.
[3] Wren C R, Azarbayejani A, Darrell T. Real time tracking of the human body [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997(7):780-785.
[4] Blake A, Isard M. Active contours [M]. Birlin:Springer, 1998.3-50.
[5] BAKER J K. The dragon system-an averview [J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1975(1):24-29.doi:10.1109/TASSP.1975.1162650.
[6] Baum L E, Egon J A. An inequality with applications to staticstical stimation for probabilistic functions of a markov process and to a model for ecology [J]. Bulletin of the American Meteorological Society, 1967(3):360-363.doi:10.1090/S0002-9904-1967-11751-8.
[7] Baum L E, Sell G R. Growth functions for transformations on manifolds [J]. Pacific Journal of Mathematics, 1968(2):211-227.
[8] Viterbi A J. Error bounds for convolutional codes and an asymptotically optimal decoding algorithm [J]. IEEE Transactions on Information theory, 1967(4):260-269.doi:10.1109/TIT.1967.1054010.
[9] 边肇祺, 张学工. 模式识别 [M]. 北京:清华大学出版社, 2002.235-237.
[10] 黄建新. Kalman滤波的人体运动位置跟踪算法 [J]. 华侨大学学报(自然科学版), 2003(3):254-256.doi:10.3969/j.issn.1000-5013.2003.03.006.

备注/Memo

备注/Memo:
华侨大学自然科学基金资助项目(02HZR13)
更新日期/Last Update: 2014-03-23