参考文献/References:
[1] Vogelaere R De. Method of integration which preserve the contact transformation property of the Hamilton equations [J]. Notre Dame Ind, 1956(4):98-154.
[2] Ruth R D. A canonical integration technique [J]. IEEE Transactions on Nuclear Science, 1983(3):2669-2671.
[3] Feng Kang. On difference schemes and symplectic geometry [A]. 北京:科学出版社, 1985.42-58.
[4] Feng Kang. Difference schemes for Hamiltonian formalism and symplectic geometry [J]. Journal of Computational Mathematics, 1986(3):279-289.
[5] Feng Kang. How to compute property Newton’s equation of motion [A]. Tianjin:Nakai Univ.Press, 1986.12-22.
[6] FENG K, Wu H M, Qin M Z. Construction fo canonical difference schemes for Hamilton formalism via generating functions [J]. Journal of Computational Mathematics, 1989.71-96.
[7] Zhong Ge, Feng Kang. On the approximation for linear Hamiltonian system [J]. Journal of Computational Mathematics, 1988(1):88-97.
[8] 冯康, 秦孟兆. Hamilton力学体系的Hamilton算法 [J]. 自然科学进展-国家重点实验室通讯, 1990(2):110-120.
[9] 冯康. 冯康文集(Ⅱ) [M]. 北京:国防工业出版社, 1995.12-103.
[10] Qin Mengzhao. A difference scheme for the Hamiltonian equation [J]. Journal of Computational Mathematics, 1987(3):203-209.
[11] QIN M Z, Zhang M Q. Multi-stage symplectic schemes of two kinds of Hamiltonian systems for wave equations [J]. Computers & Mathematics with Applications, 1990(4):51-62.
[12] 秦孟兆. 辛几何及计算哈密顿力学 [J]. 力学与实践, 1996(6):1-20.
[13] Lasagni F M. Canonical Runge-Kutta methods [J]. Zeitschrift für angewandte Mathematik und Physik, 1933(5):952-953.
[14] Sanz-Serna J M. Runge-Kutta schemes for Hamilton systems [J]. Bit Numerical Mathematics, 1988.877-883.doi:10.1007/BF01954907.
[15] Suris Y B. The canonicity of mappings generated by Runge-Kutta type method when integrating the systems [J]. Zh Vychist Mat Fiz, 1989.202-211.
[16] Sun Geng. Construction of high order symplectic Runge-Kutta methods [J]. Journal of Computational Mathematics, 1993(3):250-260.
[17] Sun Geng. Symplectic PRK methods [J]. Journal of Computational Mathematics, 1993(4):365-372.
[18] Tang Yifa. The symplecticity of multi-step methods [J]. Computers & Mathematics with Applications, 1993(1):83-90.
[19] Hairer E, Leone P. Order barriers for symplectic multi-step methods [J]. Numerical Analysis, 1997(2):53-85.
[20] 蒋长锦. 四级四阶对角隐式辛Runge-Kutta方法参数计算 [J]. 数值计算与计算机应用, 2002(3):161-166.doi:10.3969/j.issn.1000-3266.2002.03.001.
[21] Bridges T J. Multisymplectic structure, Boussinesq equation and periodic traveling waves [A]. Singapore:World Scientific, 1995.135-217.
[22] Bridges T J. A geometric formulation of the conservation of wave action and its implications for signature and the classification of instabilities [M]. New York: Pineridge Press, 1993.331-357.
[23] Bridges T J. Multisymplectic structures and wave propagation [J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1997.147-190.doi:10.1017/S0305004196001429.
[24] Bridges T J, Reich S. Multisymplectic integrators: Numerical schemes for Hamilon PDEs that conserve symplecticity [J]. Physics Letters, 2001.184-193.
[25] Reich S. Finite volume method for multisymplecitc PDEs [J]. BIT Numerical Mathematics, 2000(3):559-582.
[26] Bridges T J, Reich S. Multisymplectic spectral discretization for the Z-K and shallow water equation [J]. Physica, 2001.491-504.
[27] Marsden J E, Patric G P, Shkoller S. Multisymplectic geometry, variational integrators, and nonlinear PDEs [J]. Communications in Mathematical Physics, 1998(4):351-395.
[28] Hong J L, Liu Y. Multisymplecticity of the center box discret for a class of Hamilton PDEs and an application to quasi-periodic solitary wave of dqpkdv equation [J]. Preprint, 2004.
[29] Hong J L, Qin M Z. Multisymplectic of center box discretization of Hamilton PDEs with m2 space dimensions [J]. Applied Mathematics Letters, 2002, (8):1005-1011.doi:10.1016/S0893-9659(02)00077-0.
[30] Hong J L, Lin Y. Hans Munthe-Kass, Antonella Zanna, Globality conservative properties and error estimation of a multisympletic scheme for schrodinger with variable coefficients [J]. Applied Mathematics Letters, 2004.
[31] QIN M Z, Wang Y S. Multi-symplectic schemes for nonlinear wave equation [J]. Collected Works of CCAST-WL, 2001.69-86.
[32] 秦孟兆. 多辛几何差分格式 [A]. 北京:高等科学技术中心出版社, 2000.17-22.
[33] Chen J B, Qin M Z, Tang Y F. Symplectic and multi-symplectic methods for the Schrodinger equation [J]. Computers and Mathematics with Applications, 2002.1032-1123.
[34] Chen J B, Qin M Z. Miltisymplectic fourier pseudospectral method for the NLSE [J]. Numerical Analysis, 2001.503-512.
[35] 王雨顺, 秦孟兆. 变分与无限维系统的高精度辛格式 [J]. 计算数学, 2002(4):431-436.doi:10.3321/j.issn:0254-7791.2002.04.005.
[36] QIN M Z, Zhu W J. Volume-preserving schemes and numerical experiments [J]. Computers & Mathematics with Applications, 1993(4):33-42.
[37] 秦孟兆. 波动方程的两种哈密顿型蛙跳格式 [J]. 计算数学, 1988(3):272-281.
[38] 秦孟兆. 任意阶精度蛙跳格式稳定性分析 [J]. 计算数学, 1992(1):1-9.
[39] QIN M Z, Zhu W J. Construction of symplectic schemes for wave equations via Hyperbolic functions sinh(x), cosh(x) and tanh(x) [J]. Computers & Mathematics with Applications, 1993(8):1-11.
[40] 蒋长锦. 有限区间上多辛Preissmann格式及其附加条件 [J]. 中国科学技术大学学报, 2002(4):403-411.doi:10.3969/j.issn.0253-2778.2002.04.004.
[41] 曾文平. 高阶Schrodinger方程的哈密尔顿型蛙跳格式 [J]. 高等学校计算数学学报, 1995(4):305-317.
[42] 曾文平. 用Hyperbolic函数构造 Schrodinger方程的辛格式 [J]. 应用数学学报, 1996(3):424-430.
[43] 曾文平. 用Hyperbolic函数构造高阶Schrodinger方程的辛格式 [J]. 华侨大学学报(自然科学版), 1998(1):6-11.
[44] Zeng Wenping. A leap frog finite difference scheme for a class of nonlinear schrodinger equation of high order [J]. Journal of Computational Mathematics, 1999(2):133-138.
[45] 曾文平, 黄浪扬, 秦孟兆. "good Bousinesque"方程的多辛算法 [J]. 应用数学和力学, 2002(7):744-747.
[46] 黄浪扬. 四阶杆振动方程的tanh(x)辛格式 [J]. 华侨大学学报(自然科学版), 2002(3):217-221.doi:10.3969/j.issn.1000-5013.2002.03.001.
[47] Huang Langyang, Zeng Wenping, Qin Mengzhao. Construct of multisymplectic scheme for"good Bousinesque"equation [J]. Journal of Computational Mathematics, 2003(6):702-715.
[48] 曾文平. 用Hyperbolic函数构造四阶杆振动方程的显式辛格式 [A]. 西安:陕西人民教育出版社, 2003.45-50.
[49] 孔令华, 曾文平. 四阶杆振动方程的多级辛格式 [J]. 贵州大学学报(自然科学版), 2003(3):247-251.doi:10.3969/j.issn.1000-5269.2003.03.005.
[50] 黄浪扬. 四阶杆振动方程的sinh(x)蛙跳辛格式 [J]. 华侨大学学报(自然科学版), 2003(2):125-130.doi:10.3969/j.issn.1000-5013.2003.02.003.
[51] 黄浪扬. 四阶杆振动方程的cosh(x)显式辛格式 [J]. 华侨大学学报(自然科学版), 2003(3):239-244.doi:10.3969/j.issn.1000-5013.2003.03.003.
[52] 曾文平, 孔令华. 四阶杆振动方程的一族高稳定的十字架格式 [J]. 数学研究, 2003(3):288-292.doi:10.3969/j.issn.1006-6837.2003.03.011.
[53] 曾文平, 郑小红. 四阶杆振动方程的多辛格式 [J]. 漳州师范学院学报(自然科学版), 2003(4):1-5.doi:10.3969/j.issn.1008-7826.2003.04.001.
[54] 曾文平. Schrǒdinger方程的高精度辛格式 [J]. 厦门大学学报(自然科学版), 2003(6):697-700.doi:10.3321/j.issn:0438-0479.2003.06.004.