[1]杨冠鲁,李元杰.神经网络SNC无刷柴油发电机励磁控制器[J].华侨大学学报(自然科学版),2001,22(3):317-320.[doi:10.3969/j.issn.1000-5013.2001.03.021]
 Yang Guanlu,Li Yuanjie.Exciting Controller of Brushless Diesel Generator Based on BP Neural Network[J].Journal of Huaqiao University(Natural Science),2001,22(3):317-320.[doi:10.3969/j.issn.1000-5013.2001.03.021]
点击复制

神经网络SNC无刷柴油发电机励磁控制器()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第22卷
期数:
2001年第3期
页码:
317-320
栏目:
出版日期:
2001-07-20

文章信息/Info

Title:
Exciting Controller of Brushless Diesel Generator Based on BP Neural Network
文章编号:
1000-5013(2001)03-0317-04
作者:
杨冠鲁李元杰
华侨大学信息科学工程学院, 泉州362011
Author(s):
Yang Guanlu Li Yuanjie
College of Info. Sci. & Eng., Huaqiao Univ., 362011, Quanzhou
关键词:
柴油发电机 BP神经网络 最优控制 励磁控制器
Keywords:
diesel generator BP neural network optimal control exciting controller
分类号:
TM31
DOI:
10.3969/j.issn.1000-5013.2001.03.021
摘要:
设计一种基于 BP神经网络的监督学习控制器 (SNC) .在线性最优励磁控制的基础上,利用 3层 BP神经网络对柴油发电机的控制过程进行监督学习 .通过对网络的训练,使得网络能够达到实时控制的目的 .仿真结果表明,所设计的 SNC在系统运行方式较大的变化范围内,都能提供很好的控制性能,并有较强的鲁棒性和适应能力
Abstract:
A type of supervisory and learning controller based on BP neural network is designed. On the basis of linear optimal exciting control, a three layered BP neural network is used for supervising and learning the controlling process of brushless diesel generator. This network can be trained to attain the objective of real time controlling. As shown by simulation results, the controller so designed is able to provide very good controlling performance over a range of fairly great change in system operation mode; and it has fairly good robustness and adaptability.

参考文献/References:

[1] 王永骥, 涂健. 神经元网络控制 [M]. 北京:机械工业出版社, 1998.234-240.
[2] 段广仁. 线性系统理论 [M]. 哈尔滨:哈尔滨工业大学出版社, 1996.228-250.
[3] 管霖, 程时杰, 陈德树. 适用于控制型神经网络的快速学习算法 [J]. 华中理工大学学报, 1995(4):29-33.
[4] 高景德, 张麟征. 电机过渡过程的基本理论及分析方法 [M]. 北京:科学出版社, 1982.260-345.
[5] 杨冠鲁. 同步电机改进模型等效电路的简化 [J]. 华侨大学学报(自然科学版), 1999(3):300-302.

相似文献/References:

[1]张光亚,方柏山.木聚糖酶氨基酸组成与最适温度的模型[J].华侨大学学报(自然科学版),2005,26(2):191.[doi:10.3969/j.issn.1000-5013.2005.02.021]
 Zhang Guangya,Fang Baishan.A Model for Amino Acid Composition and Optimum Temperature in F/10 Xylanase[J].Journal of Huaqiao University(Natural Science),2005,26(3):191.[doi:10.3969/j.issn.1000-5013.2005.02.021]
[2]张光亚,葛慧华,方柏山.一种预测木聚糖酶最适温度的PCANN模型[J].华侨大学学报(自然科学版),2007,28(1):55.[doi:10.3969/j.issn.1000-5013.2007.01.015]
 ZHANG Guang-ya,GE Hui-hua,FANG Bai-shan.A Principal Component-Artificial Neural Network Model for Predicting Optimum Temperature in F/10 Xylanases[J].Journal of Huaqiao University(Natural Science),2007,28(3):55.[doi:10.3969/j.issn.1000-5013.2007.01.015]
[3]涂帆,常方强.BP神经网络预测水泥搅拌桩单桩承载力[J].华侨大学学报(自然科学版),2007,28(1):68.[doi:10.3969/j.issn.1000-5013.2007.01.018]
 TU Fan,CHANG Fang-qiang.The Method of BP Neural Network Predicting the Bearing Capacity of Single Cement Mixing Pile[J].Journal of Huaqiao University(Natural Science),2007,28(3):68.[doi:10.3969/j.issn.1000-5013.2007.01.018]
[4]许建文,刘斌.注塑件体积收缩率变化的数值模拟优化与预报[J].华侨大学学报(自然科学版),2010,31(3):241.[doi:10.11830/ISSN.1000-5013.2010.03.0241]
 XU Jian-wen,LIU Bin.Optimization and Forecast of Numerical Simulation of Volumetric Shrinkage Variation for Injection Molding Products[J].Journal of Huaqiao University(Natural Science),2010,31(3):241.[doi:10.11830/ISSN.1000-5013.2010.03.0241]
[5]黄凯宗,张光亚.使用伪氨基酸组成和BP神经网络预测类弹性蛋白多肽的相变温度[J].华侨大学学报(自然科学版),2011,32(2):194.[doi:10.11830/ISSN.1000-5013.2011.02.0194]
 HUANG Kai-zong,ZHANG Guang-ya.Using Pseudo-Amino Acid Composition and BP Neural Network to Predict the Transition Temperature of Elastin-Like Peptides[J].Journal of Huaqiao University(Natural Science),2011,32(3):194.[doi:10.11830/ISSN.1000-5013.2011.02.0194]
[6]李平,周博.双容水箱的神经PID控制[J].华侨大学学报(自然科学版),2012,33(6):608.[doi:10.11830/ISSN.1000-5013.2012.06.0608]
 LI Ping,ZHOU Bo.PID Control Based on Neural Networks in Double-Tank System[J].Journal of Huaqiao University(Natural Science),2012,33(3):608.[doi:10.11830/ISSN.1000-5013.2012.06.0608]
[7]付宝英,王启志.自适应粒子群优化BP神经网络的变压器故障诊断[J].华侨大学学报(自然科学版),2013,34(3):262.[doi:10.11830/ISSN.1000-5013.2013.03.0262]
 FU Bao-ying,WANG Qi-zhi.Transformer Fault Diagnosis of Adaptive Particle SwarmOptimization BP Neural Network[J].Journal of Huaqiao University(Natural Science),2013,34(3):262.[doi:10.11830/ISSN.1000-5013.2013.03.0262]
[8]杨洋,李钟慎,范伟.高精度数据采集系统定时器的仿真分析[J].华侨大学学报(自然科学版),2013,34(6):610.[doi:10.11830/ISSN.1000-5013.2013.06.0610]
 YANG Yang,LI Zhong-shen,FAN Wei.Simulation Analysis of High-Precision Data Acquisition System with Timers[J].Journal of Huaqiao University(Natural Science),2013,34(3):610.[doi:10.11830/ISSN.1000-5013.2013.06.0610]
[9]林源清,张光亚.G/11木聚糖酶最适pH值的预测及其与氨基酸位置的关系[J].华侨大学学报(自然科学版),2014,35(3):316.[doi:10.11830/ISSN.1000-5013.2014.03.0316]
 LIN Yuan-qing,ZHANG Guang-ya.Prediction of Optimum pH of G/11 Xylanases and the Relationship between the Location of Amino Acid and Optimum pH Value[J].Journal of Huaqiao University(Natural Science),2014,35(3):316.[doi:10.11830/ISSN.1000-5013.2014.03.0316]
[10]余路.电信客户流失的组合预测模型[J].华侨大学学报(自然科学版),2016,37(5):637.[doi:10.11830/ISSN.1000-5013.201605022]
 YU Lu.Combination Forecasting Model of Customer Churns in Telecom Industry[J].Journal of Huaqiao University(Natural Science),2016,37(3):637.[doi:10.11830/ISSN.1000-5013.201605022]

备注/Memo

备注/Memo:
华侨大学自然科学基金资助项目
更新日期/Last Update: 2014-03-23