[1]王全凤.高层结构剪力墙最优刚度的数学模型法[J].华侨大学学报(自然科学版),1994,15(2):189-191.[doi:10.11830/ISSN.1000-5013.1994.02.0189]
 Wang Quanfeng.Mathematical Modeling for Solving Optimal Stiffnessof Shear Wall in a Tall Building[J].Journal of Huaqiao University(Natural Science),1994,15(2):189-191.[doi:10.11830/ISSN.1000-5013.1994.02.0189]
点击复制

高层结构剪力墙最优刚度的数学模型法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第15卷
期数:
1994年第2期
页码:
189-191
栏目:
出版日期:
1994-04-20

文章信息/Info

Title:
Mathematical Modeling for Solving Optimal Stiffnessof Shear Wall in a Tall Building
作者:
王全凤
华侨大学土木工程系
Author(s):
Wang Quanfeng
关键词:
高层结构 剪力墙 最优刚度 数学模型
Keywords:
tall building shear wall optimal stiffness mathematical model
分类号:
TU973.16
DOI:
10.11830/ISSN.1000-5013.1994.02.0189
摘要:
通过用数学模型法求解高层结构剪力墙的最优刚度,阐明唯物辩证法在建立求解高层结构剪力墙最优刚度数学模型过程中的运用,在工程设计中具有明显的经济效益.
Abstract:
In the light of materialist dialectical thinking,a mathematical model is formed for solving the optimal stiffness of shear wall in a tall building.The significance of materialist dialectics in the formation of this mathematiCal model and obvious economic

相似文献/References:

[1]陈火忠.丽景大厦的结构设计[J].华侨大学学报(自然科学版),1997,18(2):165.[doi:10.11830/ISSN.1000-5013.1997.02.0165]
 Chen Huozhong.Structural Design of Lijing Mansion in Xiamen[J].Journal of Huaqiao University(Natural Science),1997,18(2):165.[doi:10.11830/ISSN.1000-5013.1997.02.0165]
[2]王伟,郭子雄,林树枝,等.采用剪力墙体外加固的中小学校舍框架结构抗震性能分析[J].华侨大学学报(自然科学版),2011,32(6):684.[doi:10.11830/ISSN.1000-5013.2011.06.0684]
 WANG Wei,GUO Zi-xiong,LIN Shu-zhi,et al.Study on Seismic Behavior of Middle and Primary School Frame Structures Retrofitted with External Shear Wall[J].Journal of Huaqiao University(Natural Science),2011,32(2):684.[doi:10.11830/ISSN.1000-5013.2011.06.0684]

更新日期/Last Update: 2014-03-22