[1]蔡新,林鹏程.守恒型奇摄动常微分方程混合边值问题的数值解法[J].华侨大学学报(自然科学版),1990,11(4):344-352.[doi:10.11830/ISSN.1000-5013.1990.04.0344]
Cal xin,Lin Pencheng.Numerical Solution to Conservative Form and Singular Perturbed Ordinary Differential Equation with Mixed Boundary Condition[J].Journal of Huaqiao University(Natural Science),1990,11(4):344-352.[doi:10.11830/ISSN.1000-5013.1990.04.0344]
点击复制
守恒型奇摄动常微分方程混合边值问题的数值解法()
《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]
- 卷:
-
第11卷
- 期数:
-
1990年第4期
- 页码:
-
344-352
- 栏目:
-
- 出版日期:
-
1990-10-20
文章信息/Info
- Title:
-
Numerical Solution to Conservative Form and Singular Perturbed Ordinary Differential Equation with Mixed Boundary Condition
- 作者:
-
蔡新; 林鹏程
-
华侨大学; 福州大学
- Author(s):
-
Cal xin; Lin Pencheng
-
-
- 关键词:
-
守恒方程; 常微分方程; 奇摄动; 混合边界; 一致收敛
- Keywords:
-
conservation equations; ordinary differential equatiens; singular perturbation; compound boundary; uniform convergence
- DOI:
-
10.11830/ISSN.1000-5013.1990.04.0344
- 摘要:
-
本文考虑守恒型奇摄动常微分方程混合边值问题的数值解法,构造一个非守恒型差分格式,证明该格式一阶一致收敛.对第一边值问题,改进了文[1]的结果.
- Abstract:
-
A numerical solution is presented by the authorsto the conservative form and singular perturded ordinary differential equation with mixed boundary condition.To this end,a non-conservative form differeuce scheme is con- structed The scheme is proved to be
更新日期/Last Update:
2014-03-22